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ABSTRACT 

 

State highway agencies collect a considerable amount of digital data to document as 

well as support a variety of decision-making processes.  This data is used to develop insights 

and extract information to enhance serval decision-making systems. However, digital data 

collected by highway agencies has been consistently underutilized especially in supporting 

data-driven or evidence-based decision-making systems. This underutilization is a result of a 

poor established connection between the data collected and its final possible usage.  

This study analyzes the digital data collected by highway agencies to enhance the 

reliability of decision-making systems by utilizing Geographic Information Systems (GIS) 

and data analytics. This study will a) develop an enhanced Life-Cycle Cost Analysis (LCCA) 

for pavement rehabilitation investment decisions by establishing a novel cost classification 

system , b) identifying the barriers and challenges faced by agencies to adopt a data-driven 

pavement performance evaluation process, and c) develop a dynamic pavement delineation 

algorithm that aggregates the pavement condition data at the distress level. In order to 

achieve these objectives, the study uses different digital dataset including a) pavement 

rehabilitation historical bid-data, b) pavement rehabilitation as-built drawings, c) pavement 

condition data, and d) pavement maintenance and rehabilitation geospatial data. The study 

developed an enhanced life-cycle cost analysis practice that would significantly improve the 

economic evaluation accuracy of investment decisions. Additionally, the study identified 

seven major barriers and challenges that hinder the adoption of a data-driven pavement 

performance evaluation. Finally, the study developed and automated a pavement delineation 

algorithm using Python programming language.  
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This study is expected help highway agencies utilize their historical digital datasets to 

support a variety of decision-making systems.  Furthermore, the study paves the way to 

adopting and implementing data-driven and evidence based decision-making processes.
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CHAPTER I: INTRODUCTION  

 

Background and Motivation 

Civil infrastructure systems have a significant impact on the nation’s economy by 

providing reliable and economic transportation, communication, and other services that directly 

contribute to the growth of the nation’s economy. Managing different types of infrastructure 

assets is a fundamental task for governmental agencies to achieve their mission. The Federal 

Highway Administration (FHWA) defines infrastructure asset management as programs that aim 

to help practitioners manage their physical assets effectively and efficiently through a systematic 

and strategic process of operation, maintenance and improvements (FHWA 2012). These 

programs help agencies provide an acceptable level of service and prevent the assets from further 

deterioration caused by a variety of stressors. Infrastructure asset management covers different 

types of physical assets such as pavement structures, bridges, sewer networks, etc. This study 

focuses on pavement assets and their management practices which are the fundamental 

components in building an economic and efficient transportation system. In the last decades, 

there has been a steady evolution of several asset management areas of decision making (Hicks 

et al. 2000 and Jahren et al. 2007), performance evaluation (Hall et al. 2002 and Dong and 

Huang 2012), economic evaluation (Pittenger et al. 2011 and Irfan et al. 2009), and pavement 

condition data delineation (Misra and Das 2004 and El Gendy and Shalaby 2004). However, 

there is a need for improvement in these distinct areas to efficiently utilize the growing amount 

of digital data collected and stored in different forms of databases which will consequently 

enhance and support data-driven asset management plans. 
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State highway agencies use automated data collection methods such as laser scanning and 

ultrasonic waves to collect pavement condition data. The use of automated data collection 

methods has resulted in collecting an enormous amount of pavement condition data. For 

instance, Iowa DOT collects pavement condition data every 52 feet which results in more than a 

half million pavement condition records for its pavement network stored annually in the DOT’s 

Geographic Information System (GIS) database. Additionally, state highway agencies have 

moved towards digital data storage for different daily business operations such as daily work 

reports, maintenance and rehabilitations contracts, etc. The availability of this digital data is both 

a challenge and an opportunity. The challenge is how agencies can manage and analyze the 

collected historical data while the opportunity is the valuable knowledge that agencies can 

extract from this digital data to improve the business practices and decision-making processes. 

The knowledge that can be extracted from the digital collected data can significantly 

improve the practices of asset management in terms of economic analysis and performance 

measurement which in turn can facilitate the implementation of acts including the Intermodal 

Surface Transportation Efficiency Act (ISTEA), the Moving Ahead for Progress in 21st Century 

Act (MAP-21), and the Fixing America’s Surface Transportation (FAST) Act. In 1991, the 

Intermodal Surface Transportation Efficiency Act (ISTEA) was signed and it required the 

consideration of the life-cycle costs in the design of pavements. A few years later, the Federal 

Highway Administration (FHWA) issued the Life-Cycle Cost Analysis (LCCA) in pavement 

design guide which is now used by over 80% of the Departments of Transportation (DOTs) to 

evaluate the economic effectiveness of investment decisions (Chan et al. 2008). Additionally, the 

guide provides guidelines for analyzing risks and uncertainties associated with the investment 

decisions such as agency costs and other sources of uncertainties. 
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MAP-21 requires State Highway Agencies (SHAs) to develop performance-based plans 

and risk-based asset management plans. Thus, agencies need to accurately assess the 

performance of their prior investments to improve their future performance-based plans. Many 

studies addressed the performance and economic evaluation in terms of maintenance and 

rehabilitation treatments of pavements (Hall et al. 2002, Dong and Huang 2012, and Lu and 

Tolliver 2012). However, the opportunities to realistically establish data-driven asset 

management practices are growing as agencies collect more digital data efficiently. 

Problem Statement 

The main challenge that faces state highway agencies is how to manage and analyze their 

digital infrastructure data in order to extract useful knowledge that can improve their asset 

management practices such as economic analysis, performance evaluation, digital data 

management and decision-making.   

Economic analysis of alternatives is conducted by agencies to evaluate the economic 

value of several alternatives by considering life cycle costs incurred during the future life of the 

alternative. However, there are uncertainties associated with the LCCA that question the 

credibility of the analysis results. Several studies analyzed the use of LCCA and the uncertainties 

associated with it (Abaza 2002, Salem et al. 2003, Ozbay et al. 2004, Chan et al. 2008, Li and 

Madanu 2009, and Swei et al. 2013). However, the prevailing understanding of these 

uncertainties associated with the agency costs is still limited. Therefore, there is a need to study 

this uncertainty to help practitioners choose the right decision based on rigorous economic 

analysis.  

As for performance evaluation, estimating treatment service lives is a challenging and 

fundamental task since it is directly associated with the analysis period of the LCCA and 
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performance evaluation of prior investments. Several studies addressed the performance 

evaluation issues of maintenance and rehabilitation treatments of pavements (Hall et al. 2002, 

Dong and Huang 2012, and Lu and Tolliver 2012). The majority of the studies use the data from 

the long-term pavement performance (LTPP) database that does not necessarily reflect the 

performance of treatments at the state level. Other studies used highly controlled data collected 

by state agencies (Jahren et al. (1998), Labi and Sinha (2004), Labi et al. (2007), Irfan et al. 

(2009), Liu et al. (2010), and Chen et al. (2009). Most of the previous studies used highly 

controlled data collected by state highway agencies. With the increasing amount of digital data 

collected by agencies, there is a need to evaluate and identify the challenges and barriers 

associated with using the collected data to establish a data-driven treatment performance 

evaluation process. 

As agencies strive to manage their assets, they heavily invest in automated data collection 

methods such as laser and ultrasound scanning which result in an enormous amount of pavement 

condition data. For instance, Iowa DOT collects more than half a million pavement condition 

records for its pavement network annually. In fact, many DOTs collect pavement condition data 

for very short sections (i.e., 52 feet in Iowa). As such, there is a need to develop a scientific and 

dynamic method to aggregate the pavement condition data to from reasonably long segments that 

are suitable for pavement management purposes. This method should also overcome the 

limitations of other algorithms including the cumulative difference approach (AASHTO 1993) 

and other statistical methods proposed by several studies (Divinsky et al. 1997, Kenedy et al. 

2000, Shalaby 2004, Yang et al. 2009, and D’Apuzzo and Nicolosi 2012) 

 Agencies can realize a high return on their investment from their ever growing digital 

databases in terms of the knowledge extracted from the historical data. As such, this study 
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addresses this issue by analyzing the data collected by SHAs to extract meaningful information 

that should improve SHAs practices. The research questions that this study will aim to answer 

are: 

1. How are the LCCA results affected by the historical cost data of pavement treatments and the 

variability of treatments service lives? 

2. What are the challenges and barriers that hinder the adoption of a data-drive treatment 

performance evaluation? 

3. How can agencies delineate their pavement condition data effectively in order to accurately 

represent the pavement condition? 

Research Objectives 

In order to address the aforementioned problems, this research has three main objectives 

as follows: 

1. Evaluate the effect on pavement LCCA results by differentiating historical pavement 

rehabilitation costs into pavement and non-pavement cost items and develop a process for 

accurate pavement LCCA. 

2. Identify the challenges and barriers that hinder the adoption of a data-driven treatment 

evaluation process of pavement treatments. 

3. Develop an algorithm that dynamically delineates the pavement condition data to form longer 

pavement segments for pavement management purposes. 
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Methodology and Organization 

Three major tasks are conducted to fulfill the objectives of this research. Figure 1-1 

illustrates the overall methodology and organization of this dissertation. The first objective of 

this research is to develop an enhanced LCCA that considers the associated inherent 

uncertainties which are the cost distribution of historical rehabilitation cost data. In order to 

address this uncertainty, historical bid data and as-built drawings were collected and analyzed. 

Statistical analysis methods, distribution fitting and Monte Carlo simulation were used to 

ultimately conduct a probabilistic LCCA. The results of the probabilistic LCCA are then used to 

evaluate the effect of misusing the historical cost data on the feasibility and effectiveness of 

competing investment decisions.  

The second objective of this study is to identify the barriers and challenges that hinder the 

adoption of a data-driven performance evaluation process of pavement treatments. Those barriers 

and challenges are identified by mimicking the typical performance evaluation process used by 

many agencies and researchers. The study used a spatial integration to integrate the pavement 

condition data and entire historical treatment projects data in a GIS platform. Additionally, the 

pavement distress data were tracked before and after treatment applications to determine the 

barriers and challenges associated with using the historical data to support a data-driven 

pavement performance evaluation.  
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Figure 1-1 Overall research methodology and dissertation organization 

Finally, the last component of this study aims to develop a segmentation algorithm for 

pavement sections based on the collected condition data by one state highway agency. The 

segmentation or delineation algorithm uses the affinity propagation clustering technique to find 

homogenous pavement segments at the distress level.  A case study was conducted to show the 

capabilities of the proposed segmentation methodology in terms of condition representation. 

This dissertation consists of three papers that aims to achieve each of the aforementioned 

objectives. Further details on each paper is discussed below. 

Paper #1: Enhancing life cycle cost analysis with a novel cost classification 

framework for pavement rehabilitation projects 

This paper presented a comprehensive literature review on LCCA practices and 

uncertainties. Based on the literature analysis, it was found that the majority of previous studies 

have misused the historical data of rehabilitation costs to evaluate the effectiveness of investment 
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decisions. Few studies have pointed out that contract details of pavement rehabilitation projects 

should be studied carefully to differentiate between pavement items and non-pavement items. As 

such, this paper presented a comprehensive cost classification framework that differentiates 

between pavement and non-pavement cost items.  

This cost classification framework was developed by analyzing the historical bid data 

along with the as-built drawings. Three major rehabilitation treatments were studied in this paper 

including: 

 Hot Mix Asphalt (HMA) resurfacing 

 HMA with milling 

 HMA with Cold in-place Recycling (CIPR) 

Based on the data analysis of approximately 100 pavement rehabilitation projects, the 

cost classification items was developed. Furthermore, a stochastic LCCA was conducted to show 

the effect of including non-pavement cost items in evaluating economic effectiveness of 

investment decisions. By addressing this major point of uncertainty, agencies will be able to 

enhance their LCCA practices and increase the reliability of the analysis. 

Paper #2: Barriers to implementing data-driven pavement treatment performance 

evaluation process 

This paper identified the barriers and challenges that face agencies in order to use their 

historical digital data to evaluate the performance of pavement treatments. From the literature 

review, it was found that the service life of pavement treatment have major variations according 

to the performance indicator used in the evaluation process. It was also observed that most 

agencies and researchers use data from highly controlled sites to evaluate the performance of 

specific treatments. With increasing efforts to collect digital data on pavement performance, 



www.manaraa.com

9 

 

 

there is an opportunity to tap into the historical data collected and enhance the pavement 

treatment performance evaluation process. However, there are existing barriers and challenges 

that hinder the full utilization of the historical data. Thus, this paper identified those barriers and 

presented a set of recommendation to overcome them. 

Paper #3: Dynamic multidimensional pavement delineation approach 

Highway agencies are now able to collect continuous pavement condition data using 

modern technological advancements including laser scanner, image processing and sensor 

technology. Continuous pavement condition data are often collected for very short distances 

which enhances the agency’s confidence in identifying the existing conditions. However, it is 

challenging to use the raw and high density pavement condition data to support a variety of 

decision making systems. As such, this paper presented a novel approach that dynamically 

delineates the pavement condition data at the distress level using a powerful data clustering 

technique. Pavement condition data collected by the Iowa DOT were used as a case study to 

demonstrate the capabilities of the proposed algorithm. 

Expected Contribution 

This study investigated and clarified major inherent uncertainty associated with LCCA by 

statistically analyzing the historical cost data of prior investments which will improve the 

credibility of LCCA results. Additionally, this study identified major barriers and challenges that 

hinder the use of performance-based plans. A set of recommendations to overcome those barriers 

and challenges were provided. 
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Furthermore, the study proposes a scientific and dynamic approach to segment roadways 

based on the pavement condition assessment data to accurately represent the pavement condition. 

This approach is expected to help agencies aggregate the collected pavement condition data to 

accurately represent the condition of pavement segments and hence improve several decision-

making practices.  

In summary, the outcomes of this study is expected to significantly improve the practices 

of transportation asset management by improving their economic analysis procedures, and 

establishing a data-driven treatment evaluation process and pavement condition data delineation 

approach. As such, agencies can conduct accurate economic evaluation of their investment 

decisions, adjust their data collection practices to address the identified barriers and challenges, 

and manage their collected data effectively which can create an efficient business cycle that can 

optimize the use of available resources.  
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CHAPTER 2: ENHANCING LIFE CYCLE COST ANALYSIS WITH A NOVEL COST 

CLASSIFICATION FRAMEWORK FOR PAVEMENT REHABILITATION PROJECTS  

Abstract 

Life cycle cost analysis (LCCA) procedures have been used over the past decades to 

justify the choice of one pavement design alternative over the others. However, many 

ambiguities associated with the life cycle cost input values, such as the discount rate and future 

cost estimates have questioned the credibility of the analysis results. Another unrecognized 

source of errors in pavement LCCA is the misunderstanding of pavement treatment costs when 

historical costs are typically used for estimating those costs. The historical costs of pavement 

rehabilitation projects typically include a significant amount of non-pavement related costs, 

which may result in a wrong LCCA if not treated appropriately. This paper addresses this 

specific source of error and proposes a solution to eliminating this error by using a novel cost 

classification framework that successfully differentiates mainline roadway costs from non-

pavement cost items. A case study using Monte Carlo simulation is conducted to evaluate the  

probabilistic LCCA results. The results of the case study indicate that the conventional approach 

of using total rehabilitation project costs in LCCA may even lead to a wrong investment 

decision. The findings of this study will help practitioners and researchers better understand the 

nature of pavement rehabilitation project cost distributions 

Keywords: Stochastic life cycle cost analysis, Monte Carlo simulation, pavement 

maintenance and rehabilitation, highway infrastructure, asset management, construction projects 
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Introduction 

The extensive road infrastructure in the United States, which consists of more than 4 

million miles (ASCE 2013), represents a huge financial burden on the state and local 

governments. Though highway agencies strive to keep their pavement assets at an acceptable 

condition, the existing funding gap has resulted in delaying many rehabilitation projects (Xu and 

Tsai 2012). The current road infrastructure requires periodic maintenance and rehabilitation 

treatments to be maintained at an acceptable level of functional and structural performance. At 

the same time, maintenance and rehabilitation investment decisions have to be economically 

justifiable to yield the highest return on investments by evaluating their economic effectiveness. 

Life Cycle Cost Analysis (LCCA) is a set of procedures used to evaluate the economic 

value of different design alternatives at the design stage of the project development process. 

Highway agencies have been using LCCA procedures to justify the selection of one pavement 

design alternative over the others. In addition, the agencies use life cycle concepts to evaluate the 

economic value of maintenance and rehabilitation decisions. The procedures, which have been 

well documented by most highway agencies describing the detailed implementation of pavement 

LCCA, consider different cost input values associated with the pavement over its service life. For 

example, the technical bulletin issued by The Federal Highway Administration (FHWA 1998) 

presents one of the most widely accepted guidance and recommendations in conducting LCCA. 

Additionally, the use of LCCA by agencies is widespread. Over 80% of the state DOTs perform 

LCCA to select the economic pavement alternative (Chan et al. 2008).  

However, the LCCA procedures contain inherent uncertainties and some misconceptions. 

For instance, LCCA is highly sensitive to the discount rate when the asset’s analysis period is 

long. Thus, there is clear understanding and agreement on the need to discount future costs but 
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there is no clear consensus on what discount rate would be appropriate. Federal Highway 

Administration (FHWA) recommends 4% as an appropriate discount rate for LCCA and state 

highway agencies typically use a discount rate ranging from 3-5% as a discount rate. Jawad and 

Ozbay (2006) concluded that using a fixed average discount rate for a long-term monetary cost 

estimation can significantly skew the accuracy of the estimation. Another example of the 

inherent uncertainties in the LCCA stems from possibly different sequences and timing of 

maintenance and rehabilitation treatments. Pour and Jeong (2012) discovered that in reality, 

more than ten different sequences of treatments with different application timing were available 

by analyzing historical I-40 highway project records in Oklahoma. The reality of different 

treatment sequences and application timing might be caused by funding gaps as noted by Xu and 

Tsai (2012) and/or different aging patterns due to external loading conditions, material and 

construction qualities. However, most LCCA procedures use a fixed sequence and a fixed timing 

of future pavement treatments. To overcome the uncertainties of those input values, the LCCA 

communities have embraced the concept of probabilistic LCCA by representing those input 

values in probability distribution curves. This probabilistic LCCA approach may avoid the risk 

of one point estimate from a deterministic LCCA approach but it does not eliminate the 

fundamental uncertainties associated with the LCCA results. 

Another relatively unknown point of error in pavement LCCA is the misunderstanding of 

pavement treatment costs when historical costs are typically used for estimating those costs. 

Unlike the inherent LCCA uncertainties discussed in the previous paragraph, this source of error 

can be completely eliminated if the LCCA users understand the structure of historical pavement 

treatment project costs and correctly make adjustments to estimate the pavement treatment costs 

for LCCA. 
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Historical pavement rehabilitation project cost data are archived in a database called the 

bid tabulations/tabs, which contain the summary of the bids submitted by contractors who 

responded to the bidding process. It is important to note that the pavement rehabilitation project 

costs stored in the bid tabs database include all work items for the project and the common 

practice of state highway agencies is that a pavement rehabilitation project includes not only the 

original mainline roadway  rehabilitation but also  other non-pavement related work items such 

safety enhancements, traffic signal installation, etc.. However, the work item description in the 

bid tabs data does not necessarily indicate whether a work item is related to the mainline 

roadway or not. As a result, if the total cost of a pavement rehabilitation project is directly used 

to estimate the unit cost of a pavement rehabilitation type for LCCA without understanding the 

cost breakdown of pavement rehabilitation projects, it may result in an incorrect LCCA, leading 

to a wrong selection of a pavement design or a treatment. 

The main objective of this paper is to develop a cost classification framework that 

discerns between pavement and non-pavement related costs of pavement rehabilitation projects 

for LCCA applications. This proposed framework can be used as a basis for conducting a fair 

LCC comparison between different alternatives and test the hypothesis that LCCA results can be 

significantly skewed because of the inclusion of non-pavement related costs. The study also aims 

at finding a good-fit probability distribution of total rehabilitation costs and mainline roadway 

costs for different rehabilitation types. Based on the cost classification framework and using the 

good-fit probability distributions, a case study that involves estimating the LCC of a pavement 

system probabilistically is conducted with the Monte Carlo simulation (MCS) to evaluate the 

effect of using the total rehabilitation costs on the pavement alternative selection process. The 

implications of the cost classification framework presented here will help practitioners and 
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researchers understand the nature of pavement rehabilitation cost distribution. The cost 

classification of past rehabilitation projects is essential to enhance a highway agency’s decision 

making processes and accurately assess the economic value of different pavement systems. 

Background 

The concept of LCCA is not a new concept however estimating LCCA involves many 

risks and uncertainties that affect the reliability and accuracy of its results. As such, early efforts 

have been focused on how to address those risks and uncertainties. For instance, Flanagan et al. 

(1987) integrated risk management and LCCA to address different sources of risks and 

uncertainties such as discount rate, initial capital cost and running costs. The study also proposed 

using sensitivity analysis to study the effect of uncertain parameters on the LCC. Flanagan et al. 

(1987) also integrated the probability analysis by using Monte Carlo simulation to generate 

several numbers of simulations of the LCC based on a probability distribution associated with 

different uncertain parameters. Bromillow and Pawsey (1987) laid the theoretical background for 

buildings LCCA that involves considering the capital investment, maintenance and operation 

costs, and time value of money over the asset life. The methods and concepts of earlier studies 

can be easily adapted to estimate the LCC for any type of civil infrastructure. 

LCCA has also gained importance in different sectors especially for decision makers. For 

instance, Ranasinghe (1996) developed a simplified model for decision makers to calculate the 

total project costs and considers cost escalation during construction. Those previous attempts 

have paved the way toward applying LCCA in the field of transportation asset management. 

The transportation asset management community has realized the importance of 

pavement LCCA over the past decades. Many studies have investigated the use of LCCA by 

state highway agencies and evaluated treatment cost effectiveness (Ozbay et al. 2004, Chan et al. 
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2008, Li and Madanu 2009 and Abaza 2002). Additionally, many DOTs have developed their 

own probabilistic LCCA procedures using their historical cost records and probability 

distributions (Rangaraju et al. 2008). However, the use of total costs reported in the historical 

cost records can overestimate the pavement life cycle cost and underestimate its economic 

effectiveness because the historical records do not differentiate between pavement and non-

pavement related costs. In Canada, a probabilistic LCCA that uses the best-fit probability 

distributions for pavement item costs was developed (Tighe 2001). The study used the cost data 

provided by the Ministry of Transportation of Ontario as “an average item price from the three 

lowest bid prices”. The study fitted the cost distribution for different pavement materials such as 

asphalt binders and granular materials using the test. By categorizing cost items by 

quantities, the study concluded that the lognormal distribution is the best-fit distribution for 

pavement material costs. Khurshid et al. (2014) then developed a methodology to evaluate the 

cost effectiveness of asphalt concrete overlays using treatment performance and cost. The 

agency’s historical costs were comprised of the initial construction costs and annual maintenance 

cost per lane kilometer.  

Many studies have focused on addressing the uncertainty issues in LCCA. Swei et al. 

(2013) characterized the uncertainty of unit cost construction activities of pavement maintenance 

to probabilistically quantify uncertainty in the life cycle costs of pavements. The study conducted 

case studies to demonstrate the benefit of using the distress prediction models of the mechanistic 

empirical design guide and the Oman Systems bidTabs database to determine the timing and unit 

prices of rehabilitation treatments and materials. The study presented a reliable method to 

sequence the rehabilitation treatments, however the use of historical cost data directly from the 
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bid tabs can significantly skew the LCCA results. Pour and Jeong (2012) developed realistic 

LCCA using typical sequential patterns of pavement maintenance and rehabilitation. The study 

presented a considerable leap towards determining the typical sequential patterns of pavement 

treatments activities by using the association analysis. Salem et al. (2003) established a risk-

based life cycle costing of infrastructure rehabilitation using the probability theory and 

simulation application to determine the rehabilitation and construction costs of pavements. 

Despite unique contributions of the aforementioned studies, most of them failed to  recognize the 

fact that pavement rehabilitation costs include a significant amount of non-pavement related 

costs that should be excluded from LCCA. However, a few prior studies did recognize this issue. 

The LCCA practices used by Michigan DOT were evaluated by comparing the predicted and the 

actual pavement life cycle costs (Chan et al. 2008). It was concluded that the actual costs were 

overestimated in most cases due to the overestimation in materials quantities (Chan et al. 2008). 

Irfan et al. (2009) recommended examining the contract details of treatment projects to exclude 

non-pavement activities. Lee et al. (2011) used the LCCA procedures to select a pavement 

rehabilitation method for the I-710 Long Beach rehabilitation project in California. Agency cost 

estimates consisted of construction costs and non-pavement costs, such as pavement cost, traffic 

handling cost, drainage cost and so forth. The historical bid database was used to estimate the 

unit prices of pavement items and non-pavement costs were calculated simply by using 

multipliers (Lee et al. 2011). For example, traffic handling costs were calculated as 8% of the 

total costs. The study pointed out the issue of non-pavement cost items in LCCA. However, the 

use of multipliers to calculate the non-pavement cost items is not an accurate approach. Hegazy 

and Saad (2014) developed a mathematical optimization model that aims at obtaining optimum 

fund-allocation rehabilitation decisions by considering assets’ life cycle costs. The optimization 
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model was validated using a pavement case study which aimed at allocating limited funds to 

optimize the network ride quality. However, the case study conducted did not differentiate 

between pavement and non-pavement costs. In summary, most rehabilitation projects include 

work items that are not related to the pavement structure. The inclusion of these costs in the 

LCCA can result in a biased decision making process. Table 2-1 summarizes the research 

objectives of some relevant studies discussed above and whether they differentiated between 

pavement and non-pavement costs or not.  

Table 2-1. Summary of Recent LCCA studies 

Literature Research Goal 

Differentiation 

between pavement and 

non-pavement costs 

Rangaraju et al. 

(2008) 

Probabilistic approach to determining life 

cycle costs 

No 

Tighe (2001) Guidelines for probabilistic life cycle costing 

analysis 

No 

Khurshid et al. 

(2014) 

Benefit-cost analysis of asphalt concrete 

overlays 

No 

Swei et al. 2013 Quantify uncertainty in life cycle costs of 

pavements 

No 

Pour and Jeong 

(2012) 

Development of realistic life cycle costing 

model 

No 

Salem et al. 

(2003) 

Risk based life cycle costing approach of 

pavement rehabilitation  

No 

Chan et al. (2008) Evaluation of life cycle cost practices used by 

Michigan DOT 

Yes 

Irfan et al. (2009) Evaluation of pavement rehabilitation cost 

effectiveness 

Yes 

Lee et al. (2012) Using LCCA to select pavement rehabilitation Yes 

 

Research Methodology 

This research uses descriptive statistical measures and probability theory to analyze 

mainline pavement and non-pavement related costs. Figure 2-1 illustrates the research approach 

used to classify and analyze pavement rehabilitation costs. First, a sample of historical pavement 
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treatment projects are selected and extensively analyzed using the bid tab data and the as-built 

drawings to segregate and quantify pavement and non-pavement cost items. This process 

develops a cost breakdown structure of pavement rehabilitation projects for LCCA. Second, a 

statistical analysis is conducted on those historical projects to determine the major cost drivers. 

Third, a goodness of fit test using the Komogorov-Smirnov (K-S), Anderson-Darling (A-D), and 

Chi-squared  tests are done to determine a good fit distribution for total rehabilitation and 

mainline roadway costs. Finally, the good fit distributions are then used to perform a MCS for a 

probabilistic LCCA and demonstrate the value of using the proposed approach. The probability 

distributions are directly incorporated into spreadsheet by using @risk software. A MCS uses the 

defined distribution to cover all the possible outcomes to calculate the LCC for each scenario and 

associate the calculated LCC with an estimated probability. 

Bid Data
As built 

drawings

Cost items 

classification: 

pavement versus 

non pavement items

Statistical analysis Major cost drivers

Distribution fitting
Probability 

distribution

Monte Carlo 

simulation

Probabilistic 

LCCA

Methods Outputs

Inputs

 

Figure 2-1. Research Methodology 
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Data Sources 

The bid database used in this research was obtained from Iowa DOT. Each record in the 

database contains item prices, letting date, project location, project length and so forth for 

pavement rehabilitation projects. However, there is some missing information that are not 

recorded. For example, the thickness and the number of lanes for each project are not available. 

Due to this reason, as-built drawings for the selected projects were obtained to determine the 

thickness of the pavement treatment, number of lanes, and to classify cost items in details. 

Because of the data structure in the bid tabs, it is very difficult to differentiate between the 

quantities of pavement and non-pavement related cost items. For example, an asphalt binder item 

recorded in the bid tabs data may contain work items related to the mainline roadway and paved 

shoulder at the same time. As such, the use of as built drawings is essential to separate the 

quantities and costs of pavement and non-pavement cost items. In this research, three major 

rehabilitation treatments, which are hot mix asphalt (HMA) resurfacing, HMA resurfacing with 

cold in-place recycling (CIPR) and HMA resurfacing with milling, used by Iowa DOT are 

considered. These three types of rehabilitation are most common in Iowa. Projects from 2011 to 

2013 are selected for the analysis conducted. The number of projects used is 30, 33 and 36 for 

HMA resurfacing, HMA resurfacing with CIPR and HMA resurfacing with milling respectively. 

All costs are brought to 2014 dollars using the construction cost indexes provided by the office 

of contract at Iowa DOT (2015). 

Cost Items Classification Framework 

The classification framework of cost items is developed using the expertise of Iowa DOT 

pavement engineers. It is found that the nature of rehabilitation projects is different from the 

regular preservation or minor maintenance projects. For most minor preservation and 
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maintenance projects, the project typically includes only directly pavement related work items. 

However, rehabilitation projects usually include non-pavement related work items such as safety 

work items or updating the roadway to specific standards. As such, a consensus of classifying 

pavement rehabilitation costs into five cost classes that represent specific types of work items 

was reached. Table 2-2 summarizes the five classes of cost items for pavement rehabilitation 

projects with a sample of typical work tasks for each class. These five classes are mainline 

roadway, safety, necessary, update, and miscellaneous costs.  

Mainline roadway costs include any direct costs associated within the 12 feet driving 

lanes, such as HMA, milling/scarification, base course, intermediate course, binder and so forth. 

Safety Costs are any costs related to improving the safety of the roadway, such as guardrail and 

associated costs, crash cushions, lighting and signs, rumble strips, pipe work, paved shoulders, 

and climbing lanes. Paved shoulders are defined as pavement outside of the mainline that is not 

part of a turn lane, climbing lane, or ramp. The inclusion of the paved shoulders under safety cost 

items may be debatable especially if the paved shoulder is tied to the roadway to enhance the 

performance of the pavement system. However, it was decided to include paved shoulders under 

safety costs class since roadway shoulders are used for motorists safety. However, if tied 

shoulders are used to enhance the performance of the mainline roadway, the agency should 

consider adding the shoulder costs to the mainline roadway costs.  

Necessary costs are any costs for required items when resurfacing, but not depending 

directly on the type or depth of resurfacing. This includes subdrains, patching, granular 

shoulders, earth shoulders, and pavement markings. Update Costs are any costs associated with 

bringing the roadway up to current specifications or updating existing features such as bridge 

approach replacement, turn lanes (new, extended, or resurfaced,), ramps, superelevation updates, 
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and urban works. Finally, miscellaneous costs are any costs not included in the previous cost 

classes, such as incentives, traffic control, and mobilization.  

Table 2-2. Classification of pavement rehabilitation costs 

Cost Class Examples of cost items 

Mainline roadway Widening, resurfacing, grading and replacing, and scarification 

Safety 
Guardrail, crash cushions ,lighting and signs ,rumble strips, pipes and 

aprons extensions, paved shoulders, and  climbing lane 

Necessary Sub-drain, patching, and pavement marking 

Update 
Bridge approaches, turn lane, ramps, wedges, dowel bar, retrofitting, 

urban work (manholes and sidewalks) 

Miscellaneous 

Incentives, median crossovers, traffic control, mobilization, 

sampling, erosion control, runouts/return, miscellaneous (clearing, 

insurance, grubbing…) 

 

Mainline roadway costs are expressed as per pavement thickness and number of lane 

miles because of their nature. The cost of safety and necessary items tend to increase as the 

project size increases and hence, safety and necessary costs are expressed as per lane mile. On 

the other hand, the nature of the update cost items are different from the aforementioned cost 

classes. For example, a project may have many update work items such as bridge approach 

replacement or adding turn lanes while another project might not have any update costs. As a 

result, expressing the update costs as per lane mile will be meaningless and misleading and 

hence, update costs should be expressed as total cost per project. Finally, costs of miscellaneous 

work items are expressed as costs per lane mile since they tend to increase as the project size 

increases. The cost classification framework developed is essential to analyzing rehabilitation 

project costs accurately and to remove the ambiguity associated with non-pavement related costs. 

For example, an excavation item recorded in the bid tabs data may contain work items related to 

the mainline roadway and safety at the same time. As a result, the differentiation between such 

cost items by using the proposed classification framework that can assign different work tasks to 
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the right category or split the cost between the categories becomes more important to analyze 

historical cost data records. 

Cost Data Analysis of Rehabilitation Projects 

The data analysis conducted for the three major rehabilitation treatments provides a true 

understanding of the cost distribution of pavement rehabilitation projects over different cost 

classes. Table 2-3 summarizes the average, minimum, maximum, and standard deviation of 

percentage of cost items to total costs.  

For HMA resurfacing with milling, mainline roadway costs is as high as 77.88% and as 

low as 31.94%. In some cases, other non-pavement related items represent more than 65% of the 

total project costs, which indicates that non-related pavement cost items can govern 

rehabilitation total projects costs. Safety cost items, which is the second cost driver, reached 

more than 35% in many projects. The aforementioned statistical measures indicate that mainline 

road construction cost items are not always the major driver for the total project costs. For HMA 

resurfacing, mainline roadway and safety cost are the major cost drivers. The maximum 

percentage of mainline road construction cost to total project cost is approximately 54% while 

the minimum percentage is approximately 16%.  Similarly, the percentage of safety cost items to 

total project cost is as high as approximately 60% and as low as 0%, which indicates that safety 

costs for HMA resurfacing vary significantly according to the project’s requirements. It is worth 

noting that the two aforementioned treatments tend to be used on pavements that have great 

variance in condition, as observed by the DOT’s engineers, and hence the variation in different 

cost classes was expected. 

Unlike other treatments analyzed in this research, the mainline roadway costs for HMA 

resurfacing with CIPR are found to be consistent with low standard deviation. It was also noted, 
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by the DOT’s engineers, that this treatment typically tend to be used on roads that are in similar 

condition and the treatment application is fairly consistent. The average percentage of mainline 

road construction costs to the total project cost is approximately 50% associated with a relatively 

low standard deviation. 

The average percentage of safety cost items to total costs is approximately 27% while the 

maximum and minimum safety costs to total costs percentage are 40% and 14% respectively. 

Necessary, update, and miscellaneous costs are found to have minor contribution on average to 

total project costs. The statistical analysis of the rehabilitation projects cost classes shows the 

variation of cost classes contribution to total costs. The average mainline roadway costs for each 

rehabilitation type is different and the amount of non-pavement related work items vary 

significantly from one project to another. These variations are the main ambiguity associated 

with pavement rehabilitation costs. 

Goodness of Fit 

The K-S, A-D, and χ2 goodness of fit tests are performed using @risk software to 

determine good fit distributions for total costs and mainline roadway costs for each pavement 

rehabilitation type. The goodness of fit test are conducted two times for each rehabilitation 

project. The first test is conducted to find a good fit probability distribution for the rehabilitation 

project’s total costs per lane mile while the second test is conducted to find the good fit 

probability distribution for mainline roadway costs only. Finding good fit distributions for 

pavement and non-pavement related cost items is essential to implementing probabilistic LCCA. 

The dataset for each type of rehabilitation treatment projects is used to find a good fit probability 

distribution and then conduct a probabilistic LCCA using MCS.  
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Table 2-3. Cost data analysis summary for different pavement rehabilitation treatments 

 Class Average Cost  Standard 

deviation 

Unit Average % 

to total cost 

Standard 

deviation 

Maximum Minimum 

HMA 

resurfacing 

with milling 

Mainlin

e road 

$28,792 $8,266 per inch per 

lane mile 

48.13% 11.52% 77.88% 31.94% 

Safety $50,858 $35,513 per lane mile 24.25% 14.66% 51.02% 0.00% 

Necessa

ry 

$23,705 $14,400 per lane mile 12.49% 5.83% 27.16% 1.06% 

Update $76,099 $120,380 per project 3.59% 5.15% 17.26% 0.00% 

Miscella

neous 

$22,046 $16,162 per lane mile 11.55% 5.30% 28.30% 4.22% 

HMA 

resurfacing 

Mainlin

e road 

$30,201 $7,399 per inch per 

lane mile 

36.30% 8.98% 54.14% 15.88% 

Safety $71,823 $41,283 per lane mile 25.42% 13.09% 59.22% 0.00% 

Necessa

ry 

$57,198 $34,520 per lane mile 18.90% 8.39% 49.12% 4.28% 

Update $213,712 $307,936 per project 6.71% 7.92% 31.60% 0.00% 

Miscella

neous 

$45,180 $50,955 per lane mile 12.67% 7.35% 34.62% 3.62% 

HMA 

resurfacing 

with CIPR 

Mainlin

e road 

$37,230 $4,425 per inch per 

lane mile 

50.33% 5.84% 62.13% 39.01% 

Safety $66,396 $19,743 per lane mile 26.96% 5.53% 40.80% 13.72% 

Necessa

ry 

$28,983 $12,870 per lane mile 11.83% 4.74% 20.10% 3.40% 

Update $37,071 $45,076 per project 1.23% 2.29% 12.58% 0% 

Miscella

neous 

$23,871 $10,169 per lane mile 9.66% 2.93% 17.19% 4.49% 

2
5
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Before conducting the goodness of fit test, data cleaning is done to clean the sample data 

from outliers based on extreme low and high mainline roadway costs. The extreme values are 

calculated based on the quartiles values, which is one of the statistical outlier detection 

techniques (Hodge and Austin 2004). The extreme low and high threshold values are calculated 

by dividing and multiplying 25th and 75th quartiles by 1.5 respectively. As a result, records that 

have mainline roadway costs more than the upper extreme value or less than the lower extreme 

value are excluded for the goodness of fit test. Based on the aforementioned data cleaning 

criteria, three projects are excluded from the HMA resurfacing with milling and only one project 

is excluded from the HMA resurfacing datasets. As a result, the sample sizes used to conduct the 

goodness of fit test are 29, 33 and 33 for HMA resurfacing, HMA resurfacing with CIPR and 

HMA resurfacing with milling respectively. 

In the present study, the χ2 test is used to measure the goodness of fit that is one of the 

most generally applicable tests of fit since it can be applied to discrete, continuous, univariate or 

multivariate data (Moore 1986). It was developed to test the hypothesis that a random sample has 

a specific distribution function. The χ2 value is calculated based on equation 2-1 (Moore 1986).  

 

Where,  is the number of observations, 

  is the observed frequency of the  cell, and 

  is the expected frequency for the  cell.  
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However, the χ2 test has a major drawback since there is no clear methodology for 

selecting the number and locations of bins. As such, the K-S and A-D tests are also conducted to 

reach a  consensus about finding good fit distributions. It is worth noting, that the K-S and A-D 

tests do not require binning.  

A good fit distribution would have a small value of test statistic. All input data records 

are fitted based on the following assumptions: input data is a continuous sample data, 95% 

confidence level, and cells are equiprobable. The p-value associated with the goodness of fit tests  

is 0.05. Table 2-4 summarizes the best-fit distribution for each pavement rehabilitation type. 

Log-logistic, Log-normal and Log-logistic distributions are found to be good fit 

probability distributions for the total cost per lane mile for HMA resurfacing with milling, HMA 

resurfacing and HMA resurfacing with CIPR respectively. The distribution parameters, shift 

factors and test statistics values are reported in Table 4. Similarly, the mainline roadway costs of 

HMA resurfacing with milling and HMA resurfacing are fitted to a log-logistic distribution while 

the mainline roadway costs of HMA resurfacing with CIPR is fitted to a Weibull distribution.  

The log-normal distribution parameters are the mean and standard deviation while the 

Weibull, and Log-logistic distributions parameters’ are shape and scale factors. The shift factor 

of a distribution is used to shift the domain of the distribution toward the right or the left on the 

x-axis in which a positive shift factor indicates a right shift on the x-axis and a negative shift 

factor indicates a left shift.  
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Table 2-4. Fitted distributions for each rehabilitation treatment 

Description HMA resurfacing with milling  HMA resurfacing HMA 

resurfacing 

with CIPR  

Total 

cost per 

lane 

mile 

Distribution 

(parameters) 

Loglogistic (201401;36540) Lognormal 

(166529.2;116373.6) 

Loglogistic 

(240218; 

23340) 

Shift factor  138615  

(χ2) (Rank) 7.515 (6) 5.96 (5) 0.7273 (1) 

K-S (Rank) 0.0822 (1) 0.1271 (2) 0.0777 (1) 

A-D (Rank) 0.2463 (1) 0.322 (1) 0.3668 (1) 

Mainline 

roadway 

costs per 

inch per 

lane 

mile 

Distribution 

(parameters) 

Loglogistic(10121;18097;5.6577) Loglogistic (8810.8; 

21073; 5.66) 

Weibull 

(2.24; 

10565) 

Shift factor   27, 870 

(χ2) (Rank) 5.39 (6) 5.55 (1) 1.15 (2) 

K-S (Rank) 0.0974 (1) 0.1577 (2) 0.079 (2) 

A-D (Rank) 0.2448 (1) 0.5292 (1) 0.1397 (1) 

 

Probabilistic Life Cycle Cost Analysis 

A probabilistic LCCA is adopted to study the effect of using the historical total costs per 

lane mile on pavement investment decision. The LCCA procedure recommended by the FHWA 

(1998) is used in this research. The first step in the LCCA procedure is to establish pavement 

design alternatives for a specified analysis period. In this study, an existing flexible pavement 

system is assumed and a rehabilitation treatment is needed at year 20 to buy time until the next 

total reconstruction.  

HMA resurfacing with CIPR, HMA resurfacing with milling and HMA resurfacing are 

assumed to be three feasible alternatives. The technical feasibility of each rehabilitation 

treatment depends on the existing pavement distresses. For example, HMA resurfacing with 

CIPR may not be a technically feasible alternative if the pavement surface exhibits high extent 

alligator cracks (Illinois DOT 2010). In this case study, it is assumed that the three rehabilitation 

alternatives are technically feasible. It is worth mentioning that the treatment sequencing for each 
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design alternative will vary according to the initial design of the pavement system, fund 

availability, traffic volumes, agency practice and future pavement condition. Figure 2-2 shows 

the timeline of the assumed maintenance and rehabilitation activities which can be feasible in 

many cases. It is also assumed that crack sealing, microsurfacing, rehabilitation treatment and 

crack sealing are applied at years 6, 12, 20 and 24 respectively. The timing sequence assumed is 

validated as a common sequence by discussing with pavement engineers in Iowa. It is worth 

mentioning that each agency has developed its own design strategy. For instance, California 

department of transportation (CalTrans 2013) has developed typical pavement maintenance and 

rehabilitation schedules that consider several factors such as environmental conditions. pavement 

type, and service level. As such, the maintenance and rehabilitation schedule in this study is 

assumed to be the same for all scenarios to simplify the LCCA calculations and neutralize 

rehabilitation schedule effects. 

Construction $$$$

Crack Sealing $

Microsurfacing $$

Rehabilitation $$$ 

0 4-7 10-14 18-22 24-26

Crack Sealing $

Time
 

Figure 2-2. Time line for pavement life cycle maintenance and rehabilitation  

 

The second step in the LCCA procedures is to determine the performance period for each 

alternative. The average performance period of HMA resurfacing with CIPR, HMA resurfacing 

with milling and HMA resurfacing are 10, 12 and 15 years respectively based on experience of 
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the Iowa DOT, City and County engineers,. Since there is no data available to find probability 

distributions for the performance periods, triangular distributions are assumed for each 

performance period. Thus, the most likely value is the average performance period while the 

minimum and maximum values are calculated as plus or minus two years from the most likely 

value.  

The third step in the LCCA procedures is to estimate the agency costs by determining the 

quantities and unit prices (FHWA 1998). FHWA also recommends determining the unit prices 

from the agency’s historical data. In this case study, the probabilistic LCCA is conducted using a 

similar approach. The treatment thicknesses are assumed three inches and the length of the 

project is assumed one lane mile. The total cost per lane mile and the mainline roadway costs are 

estimated based on the assumed thickness and length. Other agency costs, user costs, and salvage 

values are assumed the same across all alternatives and hence these costs are not considered in 

the LCCA. 

A MCS is then conducted to perform a probabilistic LCCA two times. The first LCCA is 

conducted using the total costs of rehabilitation projects per lane while the second LCCA is 

conducted using the mainline roadway costs only. The effect of using the total costs per lane 

mile in LCCA is analyzed using the equivalent uniform annual cost (EUAC) since the use of net 

present value (NPV) to compare the cost effectiveness of different treatments has major problem 

in determining the analysis period (Pittenger et al. 2011). As such, the EUAC presents a fair 

comparison when treatments have different performance periods. The EUAC is calculated for 

each alternative based on the stated assumptions and using a discount rate of four percent, as 

suggested by the FHWA (1998). Table 2-5 summarizes the results of the LCCA for the three 

alternatives. MCS is conducted to estimate the EUAC at different confidence levels using the 
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good-fit distributions. In addition, the average EUAC and its standard deviation for each 

alternative is calculated. 

Table 2-5. Comparison of LCCA Results  

EUAC 
HMA resurfacing 

with CIPR 

HMA resurfacing 

with milling 
HMA resurfacing 

EUAC(1) (standard 

deviation) 

$30,455 ($5,472) $24,053 ($7,914) $35,680 ($12,903) 

EUAC(2) (standard 

deviation) 

$14,192 ($1,707) $10,740 ($2,273) $10,816 ($2,345) 

EUAC(1) @ 50% $30,389.85 $24,744.87 $32,416.06 

EUAC(2) @50% $13,993.49 $10,363.92 $10,510.19 

EUAC(1) @75% $33,621.59 $29,698.14 $40,853.59 

EUAC(2) @75% $15,268.85 $11,794.91 $12,199.07 

EUAC(1) @90% $39,178.12 $34,410.94 $61,477.15 

EUAC(2) @90% $16,391.32 $13,495.2 $15,667.05 

 

Figures 2-3 and 2-4 show the cumulative probability curves of the EUACs for each 

alternative using the total rehabilitation project costs and mainline roadway costs. In the case of 

using the total rehabilitation project costs for calculating the EUAC, HMA resurfacing with 

milling is found to be the most economical alternative at different confidence levels. At the same 

time, HMA resurfacing and HMA resurfacing with CIPR have approximately an equivalent 

economic value at confidence level of 40% or less.  

However, HMA resurfacing with CIPR has a higher economic value than HMA 

resurfacing at the confidence level of 40% or more.  On the other hand, HMA resurfacing with 

milling and HMA resurfacing have approximately equivalent economical values at different 

confidence levels when only the mainline roadway costs are used. However, HMA resurfacing 

with CIPR has the lowest economical value.  



www.manaraa.com

32 

 

 

Figure 2-3. Cumulative probability curves using total rehabilitation costs 

 

Figure 2-4. Cumulative probability curves using mainline roadway costs only 
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Sensitivity Analysis 

It is found that the results of LCCA is influenced by different uncertainties and risks 

associated with different parameters such as discount rate and treatment timing. For instance, 

Pratico (2007) pointed out that LCCA has inherent problems in terms of uncertainty of 

engineering and economic values of inputs. Huang (2006) also indicated that the results of 

LCCA is questionable because the analysis inputs are based on the analyst’s experience. 

As such, a sensitivity analysis is conducted to test the effect of changing different 

parameters on the final decision. First, the discount rate is changed to vary from 1% to 6% at the 

increment of 1%. As such, the MCS is conducted five additional times using different discount 

rates. When the simulation is conducted using the total rehabilitation costs, it is found that the 

ranking of treatment selection based on the EUAC did not change at different confidence levels. 

However, it is found that the EUAC difference between HMA resurfacing and HMA resurfacing 

with milling shrinks at lower confidence levels and discount rates. On the other hand, the ranking 

of treatments based on the EUAC did not change when using the mainline roadway costs only at 

75% and 50% confidence levels and HMA resurfacing becomes slightly favorable when a 

discount rate of 5% is used at 90% confidence level (see Figure 2-5).  

Besides using different constant discount rates, a triangular distribution is assumed to 

conduct an additional MCS to study the effect of using a variable discount rate over the analysis 

period. The minimum, most likely, and maximum values were 2%, 4%, and 6% respectively. As 

such, values of the EUAC for different treatments have changed accordingly. However, the 

change recorded did not affect the ranking of treatments no matter which cost was used for 

calculations.  
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It is also noted that the timing of different maintenance and rehabilitation treatments is 

deterministic and is based on engineering judgement. As such, another MCS is conducted to 

study the effect of applying a probabilistic timing for the rehabilitation treatments and a 

triangular distribution is assumed to have 18, 20 and 22 years as minimum, most likely, and 

maximum values respectively. It is found that the EUAC for each scenario has slightly changed 

except the EUAC for HMA resurfacing total costs which is found to be increasing significantly 

at 90% confidence level to be $52,156.85. However, the change observed did not influence the 

ranking of treatments irrespective of costs used for calculations. 

 

Figure 2-5. Mainline roadway EUAC at 90% confidence level 

 

Discussions 

The use of the total cost per lane mile in the LCCA makes HMA resurfacing with milling 

the most economical alternative based on the average EUAC. MCS calculates the EUAC at 

several levels of confidence. When two levels of confidence, 75% and 90%, are considered, 

HMA resurfacing with milling is still the most economical alternative. However, at 90% level of 
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confidence, the EUAC for HMA resurfacing with milling and HMA resurfacing with CIPR are 

close to each other. In this case, the agency may consider that the two alternatives have 

equivalent economic values and hence the agency may consider other factors to select one of 

those alternatives. 

In order to study the effect of using the total costs instead of the mainline roadway costs, 

a MCS is conducted using the mainline roadway costs only. In this case, the average EUAC for 

HMA resurfacing with milling and HMA resurfacing are very close to each other. In addition, 

the EUAC for HMA resurfacing with milling and HMA resurfacing at 75% and 90% confidence 

levels are still close to each other. Similarly, the agency may consider other factors to decide 

whether to apply HMA resurfacing with milling or HMA resurfacing. 

The use of total costs per lane mile to evaluate treatment’s LCC will definitely 

underestimate the economic value of some treatments. In this case study, the economic value of 

HMA resurfacing is significantly underestimated and the decision of the highway agency can be 

substantially skewed by using the total costs from the historical data. HMA resurfacing with 

CIPR is ranked as the second economic alternative when using the historical total costs per lane 

mile. However, the same treatment is deemed uneconomical if the mainline roadway costs are 

used in the LCCA. 

The use of total costs from historical records without differentiating between the mainline 

roadway costs and other non-pavement related costs will definitely lead to biased results. The 

assumption that non-pavement related costs associated with the historical cost data records 

cannot affect the LCCA results is proved to be invalid. As such, agencies should use their 

historical records with great caution to accurately evaluate the economic effectiveness of 

rehabilitation treatments.  
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Limitations 

The study uses data obtained from Iowa DOT to evaluate the effect of including non-

pavement costs on LCCA results. As such, the conclusions made in this study can not be 

generalized. However, government agencies that follow similar procedures and practices can 

benefit from the outcomes produced.  

In calculating the LCCA, the study assumed the same maintenance and rehabilitation 

sequence for all the alternatives to neutralize the effect of applying different strategies on the 

LCCA results. For agencies seeking to replicate the study using their historical data, it is 

recommended to follow the agency practice in terms of maintenance and rehabilitation 

sequencing. Additionally, the study uses a constant discount rate and the same probabilistic 

discount rate over the alternative analysis period to calculate the EUAC. It is recommended 

adopting differential discount rates in case of comparing different alternatives that are expected 

to have different inflation/escalation patterns. 

Summary and Conclusions  

One major point of errors in the current pavement LCCA procedure stems from the 

ignorance of cost components of pavement rehabilitation projects. These rehabilitation projects 

usually include work items that are not related to the pavement structure itself such as widening, 

bridge approach, adding a turn lane and so forth. These items can be as expensive as the mainline 

roadway costs themselves or more. The statistical analysis conducted in this study shows that 

non-pavement related items account for at least more than 50% of the total project cost. Thus, 

when the entire rehabilitation project costs from historical bid data are used in LCCA, it is highly 

likely to lead to biased and sometimes wrong pavement investment decisions.  
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The study developed a novel cost classification framework that can separate pavement 

rehabilitation project costs into five categories: mainline construction, safety, update, necessary, 

and miscellaneous costs. The cost classification framework can allow for extraction of costs of 

pavement related items only.  

A goodness of fit test for total rehabilitation costs and mainline roadway costs for each 

pavement rehabilitation type was performed. The good fit probability distributions were used to 

probabilistically estimate the pavement LCC using MCS. A case study clearly showed that using 

the total rehabilitation project costs in LCCA would result in biased decisions. A treatment that is 

not economically effective can be selected because of the inclusion of a significant amount of 

non-pavement costs in LCCA. Based on the results of this research, it is recommended that 

agency costs in LCCA should only include the mainline roadway costs of rehabilitation 

treatments using the cost classification framework presented. 

This research presented a methodological process for agencies to differentiate between 

mainline roadway costs and other non-pavement related costs. One of the most important 

research outcomes is that non-pavement related costs can exceed the pavement related costs. As 

such, the inclusion of the total rehabilitation costs to estimate the LCC will definitely skew the 

results. In addition, the study provided agencies with guidance for reasonably estimating 

rehabilitation costs in conducting probabilistic LCCA. State highway agencies are encouraged to 

adopt the cost classification framework presented in this study or at least differentiate between 

pavement and non-pavement related costs to eliminate any possibility of biased LCCA decisions 

due to inclusion of non-pavement related costs embedded in project bid data. 
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CHAPTER 3: BARRIERS TO IMPLEMENTING DATA-DRIVEN PAVEMENT 

TREATMENT PERFORMANCE EVALUATION PROCESS 

Abstract 

State highway agencies have been collecting a massive amount of pavement condition 

data by using automated collection technologies. This rich historical dataset has great potential to 

support data driven pavement management decisions such as the selection and timing of 

pavement maintenance options. However, most agencies face various technical and data 

integration issues that result in serious underutilization of the collected data. Unless those 

barriers are clearly identified, communicated and resolved, it will significantly reduce the 

efficiency and effectiveness of the financial investments made to collect the pavement condition 

data and meet the Federal Highway Administration’s direction of performance based project 

delivery and asset management through MAP-21 and FAST Acts.  This study identifies technical 

challenges and data integration barriers that prevent the effective use of historical data when an 

agency tries to implement a data-driven process to evaluate the performance of pavement 

treatments.  The study uses the historical data collected from one State Department of 

Transportation as a representative highway agency. A set of recommendations is presented to 

help state highway agencies to fully take advantage of the pavement condition data collection 

efforts for implementing pavement asset management. 

Keywords: Performance Evaluation, pavement treatment, Pavement rehabilitation, 

Geographic information system, Pavement condition assessment data, asset management.  

Introduction 

The United States has one of the largest transportation networks in the world with a 

length of more than 4.3 million km of paved roads (USDOT 2013), which is a key success factor 
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for supporting the nation’s economy (GAO 2008 and Shirley 2011). With the existing massive 

transportation network and the completion of the interstate highway system (Row et al. 2004), 

most state highway agencies (SHAs) are shifting their expenditure from new construction to 

maintenance and rehabilitation of their highway system and they spend a considerable amount of 

their budgets to collect and monitor the condition of their pavement assets.  

Most SHAs are underfunded and hence they need to justify every investment decision 

made. For example, the National Surface Transportation Policy and Revenue Study Commission 

recommended increasing spending on preservation, operation, maintenance and upgrade 

investments by $225 billion to $340 billion annually for the next 50 years while the current 

expenditure is less than $90 billion annually (Burwell and Puentes 2009). Thus, decisions on 

what types of treatments should be used and when are highly important to maximize the value of 

agency’s investments and taxpayers’ money. 

Therefore, SHAs should carefully select a pavement treatment option that is expected to 

yield the best performance and the highest return on investment. Also, the Federal Highway 

Administration’s (FHWA) initiatives of performance based project delivery and asset 

management spearheaded by MAP-21 and FAST Acts, have increased the efforts to objectively 

evaluate the performance of various types of pavement treatments to meet the FHWA’s 

requirements (FHWA 2016). This has created an immediate need for SHAs to analyze their 

historical pavement condition assessment data to evaluate the effectiveness of maintenance and 

rehabilitation decisions and conform with the federal requirements. However, the collected 

historical data is highly underutilized at present due to many technical challenges and data 

integration issues while the theoretical evaluation process is quite well established. These issues 
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seriously hinder the use of historical data to support the agency’s pavement management 

business decisions.  

This study uses one DOT’s entire historical pavement condition assessment data, 

pavement treatment contract data, and other data available to demonstrate barriers when a data-

driven pavement treatment performance evaluation process is implemented and develop a set of 

recommendations that DOTs may need to adopt to overcome those barriers and to fully take 

advantage of expensive data collection efforts.  

Literature Review 

Many studies evaluated the performance of maintenance and rehabilitation treatments of 

pavements.  These studies use one of the two main sources of data; a) the Long-Term Pavement 

Performance (LTPP) program database and b) the pavement condition data collected by 

agencies. The LTPP program, initiated in 1987, represents an important source of pavement 

performance information (FHWA 2016). The LTPP program has an inventory of material 

testing; pavement performance monitoring; as well as climate, traffic, maintenance, and 

rehabilitation data for more than 2,500 test sections located in the United States and Canada 

(FHWA 2016). 

 Some of those studies that used the Long-Term Pavement Performance (LTPP) data evaluated 

the performance of several treatments such as Hot Mix Asphalt (HMA) overlay, slurry seal, chip 

seal and crack seal (Hall et al. 2002, Wang et al. 2012, Shirazi et al. 2010, Lu and Tolliver 2012, 

and Dong and Huang 2011). Other studies used the LTPP data to evaluate the performance of 

microsurfacing and asphalt overlay in Texas (Chen et al. 2003 and Hong et al. 2010). On the 

other hand, Jahren et al. (1998), Labi and Sinha (2004), Labi et al. (2007), Irfan et al. (2009), Liu 

et al. (2010), Chen et al. (2009), Ji et al. (2012), and Broughton and Lee (2012) used data 
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collected locally at a state level to evaluate the performance of several treatments such as 

microsurfacing, asphalt overlays, crack seal, and chip seal.  

Previous studies also used statistical significance testing to evaluate the performance of 

several treatments. Labi and Sinha (2004), Labi et al. (2007) and Lu and Tolliver (2012) used 

one-sided hypothesis test to assess the statistical significance of the estimated performance 

enhancement at 95% level of confidence. Ji et al. (2012) used the analysis of variance (ANOVA) 

to compare the Structural Number (SN) and statistical difference of International Roughness 

Index (IRI) before and after treatment application. However, the aforementioned tests assume a 

normal distribution of the means of the population which is not necessarily true in some cases. 

Wang et al (2012) also used the paired t-test to evaluate the effectiveness of pavement treatments 

by analyzing the IRI measurements between control sections and sections that received specific 

treatment. On the other hand, Shirazi et al. (2010) recognized the restricting assumptions 

associated with parametric tests such as paired t-test and used Friedman’s test, a non-parametric 

test, to evaluate treatments performance. However, it should also be noted that quality of the data 

used in the performance evaluation process is as important as or more important than the 

statistical methods used. The consistency, precision and accuracy of data collected by highway 

agencies at the network level are still questionable and more research is needed to assess the 

quality of the collected data. Also, it should be noted that the aforementioned studies did not 

carefully examine the existing quality issues associated with the historical data. Those studies 

may not have faced data quality issues since they used high quality data stored in the LTPP 

program or collected by agencies for highly monitored control sections.  

The main problem with performance evaluation or other infrastructure data analysis 

processes is not associated with coherency or robustness of the methods employed. It is mainly 
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associated with the quality of the input data.  Thus, there is an urgent need to analyze the 

consistency and quality of the collected data and analyze their applicability to support business 

decisions such as treatment selection or performance evaluation.  

The technical challenges and data quality and integration issues have been noticed by 

several researchers. However, little attention has been given to the effects of those issues on 

pavement management decisions. Flintsch and McGhee (2009) identified some issues associated 

with pavement data collection practices. For example, many agencies that have adopted 

automated and semi-automated data collection methodologies face consistency problems which 

intensify when the agencies change the equipment used or the service provider. 

Quality issues are another source of challenges and barriers to the use of performance 

data to support pavement management decisions. For example, Salimnejad and Ghariabeh (2012) 

indicated that pavement condition data was noisy and had too much variability because of the 

method of data collection.  Although 64% of the U.S. highway agencies have formal data 

collection quality control plan, only 48% of them have a formal quality acceptance plan (Flintsch 

and McGhee 2009). This indicates that many highway agencies do not have formal quality 

control or acceptance plans which may adversely affect the quality of the collected data.   

Shekharan et al. (2007) evaluated the effects of quality control plan on pavement 

management systems. The study found out that Virginia DOT significantly increased the 

accuracy of reporting the existing condition and deficient pavements by 60% and 30% 

respectively by using a robust quality control plan. Consequently, Virginia DOT saved more than 

$18 million dollars for the interstate pavement maintenance recommendation (Shekharan et al. 

2007). Saliminejad and Ghariabeh (2013) also confirmed that annual budgeting was highly 

sensitive to errors in pavement condition data.  
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The quality of pavement performance data is now under even more scrutiny with the 

emergence of automated data collection methods, though few studies identified problems and 

issues associated with historical data-driven pavement performance evaluation. Researchers 

evaluated those technologies and pointed out to the possible poor quality of data because of 

several sources of error such as imaging errors, field of view coverage, image quality, 

technology used, quality of the color contrast, lighting method and processing algorithms 

(Mcneil and Humplik 1991 and Flintsch and McGhee 2009). Flintsch and McGhee (2009) as 

well as McQueen and Timm (2005) reported that there was a bias toward detecting high severity 

cracks when compared to lower severity cracks regardless of the method, automated or manual, 

of cracking data collection. As for more advanced technologies, such as 3D automated systems, 

there are also concerns regarding the precision and accuracy of automated systems used to 

collect pavement condition data (Serigos et al. 2016 and Tsai and Li 2012).   

Another type of barrier that hinders the use of historical data is the separate storage of 

data collected by different business units. For example, Vandervalk-Ostrander et al. (2003) 

examined the data integration practices of 27 agencies and found out that most agencies were 

dealing with “disparate data sources in mainframe flat files”. Similarly, Hall (2006) indicated 

that many agencies were facing challenges and difficulties in integrating their fragmented data 

while Adams (2008) pointed out that agencies were struggling with data integration issues such 

as location referencing, disconnected business cycles and inconsistent terminology. Saliminejad 

and Gharaibeh (2012) found out that the integration of missing maintenance and rehabilitation 

data with pavement condition data was especially challenging for large pavement networks. 

The size of the data used for analyzing the performance of a specific treatment is another 

barrier, especially for agencies that did not invest resources in extensively monitoring pavement 
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sections of interest. For example, the use of the LTPP data in performance evaluation at the 

national level is beneficial because of the large number of sections stored in the LTPP database. 

However, using the LTPP data at the state level might not be reliable for some states because of 

a limited number of test sections. For instance, Iowa has data for only 66 test sections which 

form a small population especially when those sections are classified into pavement and 

treatment types. Thus, there is a need to utilize the data collected by DOTs at the state level and 

to evaluate the performance of pavement treatments. The level of quality control used for the 

LTPP program is relatively more advanced compared to the level of quality control used by 

DOTs. For example, the LTPP has a well-developed and documented equipment calibration 

procedure (Flintsch and McGhee 2009). The LTPP uses a relatively higher percentage of 

sampling to verify data accuracy such as distress mismatch and misidentification of severity 

levels (Flintsch and McGhee 2009). 

Finally, there is no consensus on which performance indicator should be used to evaluate 

the performance of pavements. There is a wide range of performance indicators used by 

researchers to evaluate the performance of different treatments such as IRI, pavement condition 

rating (PCR), pavement condition index (PCI), and rutting. Some studies used structural 

performance indicators such the structural number (SN) to evaluate the structural performance 

after treatment application (Ji et al. 2012). Few studies used individual distresses such as fatigue 

cracking and transverse cracking for performance evaluation (Hall et al. 2002 and Hong et al. 

2010). While many studies used common performance indicators to evaluate the performance of 

treatments, Liu et al. (2010) used the time between two consecutive treatments or time between 

treatment application and reconstruction to estimate the service life of thin surface treatments. 

The methodology adopted by Liu et al. (2010) reflects the DOT’s actual experience on the 
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estimation of treatment performance. However, this methodology fails to consider the delay in 

consecutive treatment application due to funding gaps.  

Data-driven Pavement Treatment Performance Evaluation Process 

A typical and well-established performance evaluation process of pavement treatments is 

shown in Figure 3-1. The performance evaluation process is divided into four distinctive steps. 

First, the historical condition assessment data is spatially integrated with pavement treatment 

project databases. When these two major databases are spatially integrated, the pavement 

condition data and the locations of treatment projects are matched so that the initial pavement 

conditions before a treatment application and the performance of the pavement section after the 

treatment application can be analyzed. The second step involves categorizing data in the 

integrated database by several attributes. These attributes can be traffic volumes, pavement 

design characteristics, treatment characteristics or geotechnical data. This step is important to 

group similar pavement sections together to statistically analyze the performance of pavement 

treatments.  In step three, the consistency of the pavement condition data after treatment 

application is evaluated in accordance with a selected method of measuring a treatment’s service 

life along with pavement performance indicators. Finally, in step four, the performance of each 

pavement treatment is evaluated and performance curves are developed.  This study uses the 

entire historical data obtained from one DOT and follows the four step process described above 

to identify barriers and challenges that impede implementing a data-driven pavement 

performance evaluation process. 
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Figure 3-1 Data-driven Pavement Treatment Performance Evaluation Process 

Step I: Data Collection and Integration 

There are two primary sources of data used. The first is the historical pavement condition 

data and the second is the pavement treatment contracts data which contains a list of all projects 

let by the DOT. As for the pavement condition data, the DOT collects rutting and roughness 

through a vendor that uses a sensor technology. The vendor also takes images and uses image 

processing algorithms to estimate the cracking data. Afterward, the DOT engineers inspect the 

image processing results and accept or override the results. The DOT has hired the same vendor 

to collect the data from 1999 to 2015. The DOT also uses quality control measures throughout 

the data collection process. Before the data collection process, the vendor collects pavement 

condition data for eight control sites to calibrate the equipment and validate the results. The 

calibration of equipment is necessary to collect high quality ride and rutting data. The DOT also 

checks for data completeness and outliers after data collection. Finally, a time series analysis is 

done by comparing the current PCI and the previous PCI. When the PCI of the current year is 

unjustifiably higher than the previous PCI, further inspection is made to find the source(s) of 
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error.  The condition data is collected every year for half of the state. For example, the pavement 

condition data for the north west region of the state was collected in 2004, 2006 and 2008 while 

the pavement condition data for the south east region of the state was collected in 2003, 2005 and 

2007. 

The project contracts database obtained from the office of contracts contains information 

about project number, accounting number, project type, project length, and location referencing 

data. The location for each treatment project is identified using either Geographic Coordinates 

System (GCS) or Linear Referencing System (LRS) data as well as the location’s textual 

description. The total number of treatment projects let by the DOT from 1999 to 2007 is 1080 

projects. It is also worth noting that the last raw condition data available was the 2013 raw 

condition data. Hence, the evaluation of projects constructed before 2007 was only considered to 

investigate the long-term performance issues. 

The spatial integration of the two databases facilitates an accurate overlay of a treatment 

project’s location and length on the pavement network. The geographic location of each project 

using a GCS or a LRS has to be used for the spatial integration process. The GCS uses the 

latitude and longitude data to locate the midpoint of the project while the LRS uses the route 

number, beginning milepost, and ending milepost to describe the location of the project. The 

aggregation of distress values is done by using a unique identifier field which indicates that 

pavement sections share the same properties in terms of traffic and pavement materials. Two 

barriers are identified in Step I.  

Barrier 1: Use of different geographic referencing systems  

The first barrier is the use of different location referencing systems including GCS and 

LRS, which causes data fragmentation. The pavement condition data is stored in a Pavement 



www.manaraa.com

48 

 

Management Information System (PMIS). PMIS systems use LRS to represent pavement 

segments or links. LRSs are essential to represent the beginning and ending of highway 

segments. On the other hand, treatments projects are usually geographically referenced using 

GCS. This creates a data integration problem since the LRS output is a line feature that starts 

with milepost and ends with a milepost while the GCS output is a point feature located by 

geographic coordinates. Thus, there is a need to use the geographic coordinates along with the 

project length to determine the project starting and ending point. The use of two different 

referencing systems requires extensive efforts to integrate the two databases together. 

Geoprocessing tools are required to spatially integrate the treatment projects database with the 

pavement condition data by creating a buffer using the project length to clip the pavement 

condition data layer. The clipped pavement condition data is then manually cleaned from 

irrelevant pavement sections. This process is repeated for each year’s pavement condition dataset 

and the final pavement condition data is then exported to aggregate different distress values.  

In addition to the use of two different geographic referencing systems, many of the 

project location coordinates were not accurate. This was evident because many of the projects 

locations were offset from its known route and manual adjustment were made to snap the 

project’s location to its accurate location. 

Barrier 2: Poor or absence of quality control measures for data collection 

The second barrier is associated with several data quality issues that resulted in excluding 

a significant number of the rehabilitation projects from the performance evaluation process. The 

exclusion of several projects in the analysis was unavoidable because of several reasons 

including unavailability of performance data, missing information, missing pretreatment 

condition data, and inconsistent formatting of data. Some locations did not have condition or 
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performance data collected at one or more surveying periods. This creates a gap in the available 

performance data, which hinders the performance evaluation process. Also, for some projects, 

important pieces of information are recorded such as overlay thickness or milling thickness. 

Missing pretreatment condition data is another issue. If the pretreatment condition data was not 

collected, it is challenging to evaluate the post treatment performance. Inconsistent formatting of 

data was another challenge that was evident and associated with project numbering. Most 

treatment projects are supposed to be recorded in the pavement management information system 

(PMIS). However, in many cases, the project number recorded in the PMIS does not match with 

the project number that is recorded by the office of contracts. For example, an HMA resurfacing 

project was recorded in the pavement treatment contracts database with project number [STPN-

044-4(39)--2J-39] and the same project was recorded in the PMIS as [STPN-44-4(39)--2J-39].  

Step II: Pavement Classification 

HMA resurfacing, HMA resurfacing with milling, and HMA resurfacing with cold-in-

place recycling (CIPR) treatments are the three most frequent rehabilitation treatments by the 

DOT. Thus, this study uses these three treatment types for performance evaluation. Table 3-1 

shows the number of segments and number of projects for each treatment type. In this study, the 

term “segment” is defined as a stretch of a pavement that shares the same traffic volume, 

pavement structure and design attributes. The term “project” is defined as the entire treatment 

application, which may cover multiple segments. 
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Table 3-1 Number of segments and projects analyzed 

 Pavement type   

Treatment type AC PCC 

Composite Number 

of 

projects 

analyzed 

Total 

number 

of 

projects 

JPCP(1

) 

CRC- 

CTB(2) 
JRCP(3) CRC(4) 

HMA resurfacing 5 51 26 - - - 37 193 

HMA resurfacing 

with CIPR 
14 - 11 - - - 16 

25 

HMA resurfacing 

with milling 
2 - 24 2 12 5 25 

126 

(1) AC layer over jointed plain concrete pavement (JPCP) 

(2) AC layer over continuous reinforced concrete (CRC) with cement treated base 

(3) AC layer over jointed reinforced concrete (JRCP) 

(4) AC layer over CRC 

 

Classification of pavement sections by traffic volume is important because traffic loading 

is an influential factor that affects treatment performances. For example, Labi et al. (2007) found 

out that traffic was an influential factor on microsurfacing performance. Dong and Huang (2012) 

also indicated that traffic level was a significant factor on HMA overlay performance.  Sites are 

classified based on traffic loading/equivalent single axle loads (ESALs). Figure 3-2 shows a 

histogram for the number of segments based on the ESALs for HMA resurfacing on composite 

pavements. The classification of data is developed by using manual and natural breaks (jenks) 

classification in order to find naturally occurring data categories (see Figure 3-2). The use of 

manual and jenks classification minimizes the group variance while maximizing the variance 

between the groups.  
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Figure 3-2 Characterization of segments for HMA resurfacing on PCC pavements 

Table 3-2 summarizes segment characteristics for each treatment by pavement type. The 

average pavement thickness, overlay thickness, and milling thickness are calculated for each 

group. One major barrier was identified in Step 2. 

Table 3-2. Characteristics of pavement segments by treatment and pavement type 

Pavement 

type 

Treatments Traffic 

loadings 

groups 

Number of 

segments 

in each 

group 

Pavement 

thickness 

(mm) 

Overlay 

thickness 

(mm) 

Milling 

thickness 

(mm) 

PCC HMA 

resurfacing 

A, B, C, 

and D 

9, 24, 8, 

and 9  

299, 346, 

368, and 

330  

86, 103, 

113, and 92 

N/A 

Composite-

JPCP 

HMA 

resurfacing 

A, B, and 

C 

9,14, and 2 383, 401, 

and 394.5 

76, 98.5, 

and 204 

N/A 

HMA 

resurfacing 

with milling 

A, B, and 

C 

12, 7, and 5 337, 385, 

and 376 

116, 90, 

and 133 

116, 90, 

and 133 

HMA 

resurfacing 

with CIPR 

A 11 386 84 N/A 

Composite-

JRCP 

HMA 

resurfacing 

A 12 366 106 97 
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with milling 

AC HMA 

resurfacing 

with CIPR 

A 13 296 91 N/A 

 

Barrier 3: Small sample sizes due to characterization of pavement sections 

There are several parameters that should be used to group similar pavement segments 

together such as treatment characteristics, pavement thickness, overlay thickness, traffic volume 

and subgrade condition. It is challenging to use these parameters simultaneously to group similar 

segments together, especially because it generates small sizes of samples that share similar 

characteristics. Using two attributes, traffic loading and pavement type, to group similar 

segments together resulted in generating small sample sizes. For example, 25 jointed plain 

concrete pavement segments received HMA resurfacing. Only two of them share high traffic 

loading (see Table 3-2). Similarly, small sample sizes were generated with respect to HMA 

resurfacing on jointed plain concrete pavements with high traffic loadings. This barrier is 

expected to have a broader impact especially when agencies consider multiple attributes or 

characteristics for grouping similar pavement segments. 

Step III: Evaluation of Data Consistency for Performance Evaluation 

There are two key factors in evaluating the performance of pavement treatments: a) 

method of measuring treatment service life and b) pavement performance indicator. In the 

literature, the estimation of the service life of a pavement treatment, shown in Figure 3-3, is 

conducted using three different methods; a) time taken for pavement condition to reach a specific 

threshold value (T1), b) time taken for post treatment condition reaches the pretreatment 

condition (T2), or c) time taken until the application of another maintenance/rehabilitation 

treatment (T3). Each one of those three service lives does not have to be less than the other two. 
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Figure 3-3 Methods for estimating treatment service life 

The concept of using a specific performance indicator to measure the service life as part 

of a treatment performance or effectiveness evaluation is not a new concept (Ping et al. 2010). 

The concept of service life is simple and easy to communicate with different stakeholders 

including engineers, administrators, legislators, and general public (Ping et al. 2010). O’Dohorty 

(2007) proposed the use of service life, measured based on specific threshold, in measuring the 

performance of the overall network. In terms of performance indicators, Shiyab et al. (2006) 

determined that effective structural number, IRI and pavement quality index are the best 

performance indicators to estimate the pavement service life. The pavement quality index is an 

overall measure that considers the severity and extent levels of several surface distresses. Chou 

et al. (2008) also used an overall pavement condition measure and used data from Ohio DOT to 

estimate the service life of pavements.  
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In this study, since all three rehabilitation treatments evaluated have asphalt concrete 

surface, asphalt concrete surface distresses are considered as potential performance indicators. 

The DOT collects distress condition data including rut depth of wheel paths, alligator cracking, 

transverse cracking, longitudinal cracking, longitudinal cracking on wheelpath, and IRI for 

asphalt pavement surfaces. As for cracking data, the DOT classifies cracking distresses into three 

different levels; low, moderate and high. However, alligator cracking distress is only classified 

into two severity levels; moderate and high. 

As the pavement treatment age increases, pavement condition data over time is expected 

to show gradual degradation and display typical and natural deterioration patterns as shown in 

Figure 3-3. Any deviation from this natural deterioration pattern may indicate poor data 

calibration practices, and/or unrecorded maintenance activities such as localized repairs. Figure 4 

shows a clear example of inconsistent deterioration patterns of moderate transverse cracking.  

The four segments that received HMA with CIPR, shown in Figure 3-4, had a clear performance 

jump after a treatment application. However, significant and unexplainable performance jumps 

that were not associated with the treatment application appear in year 5, 7, 9 and 11. For 

example, segment A shows a decrease in moderate transverse cracking between years five and 

seven. On the other hand, segment B shows a continuous condition improvement after the 

treatment application. 
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Figure 3-4. Moderate transverse cracking propagation after applying HMA with CIPR 

Thus, the consistency of pavement condition data must be evaluated to determine the 

usability and quality of the data before the pavement performance is evaluated. A pavement 

segment that exhibits irregular deterioration patterns with abrupt or unexpected performance 

enhancement is considered to have inconsistent performance. In this study, Equation (3-1) is 

developed to measure the percentage of data inconsistency. 

 

Where, N is the number of segment with inconsistent performance and TN is the total 

number of segment under study.  

Table 3 shows the  for each performance indicator based on this criterion. The  

is a measure that ranges from 0% to 100%, where 0% represents excellent consistency and 100% 

presents perfect inconsistency. Three ranges are proposed based on the score; a) high 
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consistency with the D2I2 score of 0% to 30%, b) moderate consistency with the D2I2 score of 

30% to 50% , and low consistency with the D2I2 score greater than 50%. 

Table 3-3. Percentages of segments exhibiting inconsistent deterioration patterns 

Distress type 

Pavement Type 

PCC (HMA 

resurfacing) 

Composite-JPCP Composite-

JRCP 

(Milling) 

AC 

(CIPR) Resurfacing Milling CIPR 

Alligator 

cracking 

M1 28% 19% 25% 46% 13% 61.50% 

H2 4% 0% 8% 9% 13% 23.10% 

Agg3 28% 19% 28% 36% 13% 46% 

Transverse 

cracking 

L4 46% 27% 50% 36% 33% 38.50% 

M 84% 85% 33% 55% 88% 84.60% 

H 50% 69% 8% 55% 58% 69.20% 

Agg 44% 27% 50% 54% 29% 31% 

Longitudinal 

cracking 

L 40% 27% 25% 27.30% 25% 61.50% 

M 76% 65% 25% 63.60% 67% 76.90% 

H 62% 58% 25% 54.50% 54% 69.20% 

Agg 38% 38% 25% 18% 17% 46% 

Longitudinal 

wheelpath 

cracking 

L 46% 27% 25% 36.40% 33% 46.20% 

M 68% 62% 33% 54.50% 54% 76.90% 

H 28% 42% 8% 36.40% 50% 76.90% 

Agg 54% 35% 25% 27% 25% 54% 

Rutting 36% 31% 13% 14% 29% 39% 

Roughness 28% 19% 8% 18% 17% 19% 

 

Based on the analysis of the pavement condition data, the deterioration patterns of 

moderate and high alligator cracking were consistent. In fact, alligator cracking had the least 

percentage of segments of inconsistent deterioration patterns. Also, the short- and long-term 

performance of segments was excellent as the level of extent of alligator cracking was very low 

i.e., zero or almost zero m2/km. 

In terms of transverse, longitudinal, and longitudinal on wheelpath cracking, the majority 

of segments exhibited inconsistent deterioration pattern. For instance, 84 percent of PCC 
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pavement segments that received HMA resurfacing treatment had inconsistent pavement 

deterioration pattern in terms of moderate transverse cracking. The majority of segments also 

exhibited inconsistent deterioration patterns in terms of moderate severity distresses.  However, 

it is important to note that the extent level of cracking can be inconsistent to some degree. This 

mainly occurs because of the deterioration process of pavements. Some of the low severity 

cracks transform into moderate or high severity cracks over time. Similarly, some of the 

moderate severity cracks transform into high severity cracks. As such, the aggregated value of 

cracks by the severity level should have a consistent deterioration pattern. However, many 

segments exhibited inconsistent deterioration patterns even in terms of aggregated value of 

cracks (see Table 3-3).  

The analysis of pavement performance at the distress level reveals fundamental drawback 

when collective condition measures such as the PCI are used. The method of calculation of 

collective condition indexes include aggregating several distress values together to generate an 

overall measure of the pavement condition. Thus, the PCI might not be sensitive to errors at the 

distress level. For example, a measurement error in a low severity distress type may not make a 

major effect on the overall index. Moreover, these errors may result in overestimating or 

underestimating the extent level of several distress types. With the absence of tight quality 

control measures related to collecting individual distress data, the calculation of a collective 

measure such as the PCI is subjected to numerous combinations of errors. On the worst case 

scenario, underestimated and overestimated extent and severity level of several distress types 

may cancel out their effect and there could be tens of errors combination that undermine the 

integrity and reliability of collective measures such as PCI. 
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Barrier 4: Inconsistent long-term performance data 

The inconsistent pattern of condition data is a serious problem that may cause poor and 

unreliable estimation of the treatment service life. The high D2I2 values in Table 3-3 are strong 

evidence that many sections actually have inconsistent and unexplainable performance data at 

the distress level and this is one of the most significant barriers to developing performance 

curves of pavement treatments and determining the service lives of the treatments.  

Barrier 5: Selection of a representative performance indicator(s) 

Ultimately, the performance of a pavement treatment should be evaluated by using each 

individual performance indicator, which will help SHAs make accurate maintenance and 

rehabilitation decision in the future. This is essential for project level decision makers as they 

need to analyze the pavement condition to apply the right maintenance/rehabilitation treatment. 

As such, each distress type should be considered as a performance indicator and an average 

service life for pavements should be estimated from that perspective. However, there is no 

general consensus on which performance indicators should be used to estimate a treatment’s 

service life. Additionally, since each pavement distress would trigger a different maintenance 

and rehabilitation strategy, an overall measure such as PCI would not be suitable for project level 

decision making. For example, Illinois DOT does not recommend fog seal or sand seal treatment 

to address rutting depth less than 0.5 inches while recommends microsurfacing to address such 

condition (Illinois DOT 2010). Similarly, a treatment selection decision-support system 

developed for Iowa local agencies shows that the existing distress type and its severity and extent 

level determine the appropriate treatment strategy (Abdelaty et al. 2015). For example, low or 

moderate severity longitudinal cracking can be sealed or filled, however, major maintenance or 

rehabilitation treatments are more suitable to address high severity longitudinal cracking. As 
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such, choosing one or more performance indicators might not provide the complete picture of the 

treatment performance. 

Barrier 6: methodology to estimate pavement service lives 

Similar to barrier 5, there is no consensus on which method should be used to measure 

the service life of a pavement treatment. Different methods would result in different service lives 

and consequently, different effectiveness and economic value of each maintenance and 

rehabilitation treatment. Figure 3-5 shows the rutting data for a composite pavement segment 

that received HMA resurfacing treatment. The treatment was applied in 2005 and performance 

data were collected in 2004, 2006, 2008, and 2012. The estimated service lives for that specific 

treatment can be drastically different based on the method used to measure the service life. For 

example, the estimated service life can reach 13 years (T1) when a specific threshold value is set 

by the agency. In this illustrative example, an arbitrary threshold value is selected based on the 

one DOT failure threshold values (Bektas et al. 2015). It is worth mentioning that the Iowa DOT 

uses 12 mm as failure threshold value for rutting. Additionally, future pavement deterioration 

was extrapolated based on the past observed performance. The second service life is estimated to 

be approximately seven years and is calculated based on the time taken so that the pavement 

reverts to its pretreatment condition. This illustrative example shows how the method used to 

estimate treatment service life could be different.  
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Figure 3-5 Estimation of treatment service life using different methodologies 

Similarly, Figure 3-6 shows the estimation of service life for HMA resurfacing applied to 

a composite pavement section. The time taken by that specific section to revert to its 

pretreatment condition is approximately 10 years. On the hand, it is found that another treatment 

was applied between 2011 and 2012. Thus, the treatment service life based on the latter case is 

estimated to be 6.5 years.  
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Figure 3-6 Estimation of treatment service life using different methodologies 
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Barrier 7: Poor documentation of maintenance and performance data 

This barrier might be the root cause of barrier 5. With interviews with the DOT engineers 

and review of current practices, the following factors were identified as potential reasons behind 

irregular patterns; a) no documentation or poor documentation of in-house maintenance 

activities, b) recording sealed cracks as low severity cracks, c) crack transformation from one 

type to another, and d) error in distress identification, measurement, and recording. The DOT 

performs in-house maintenance activities such as crack sealing/filling which are not recorded in 

terms of its location and quantity. Also, sealed cracks are recorded as low severity cracks and 

hence the pattern of crack deterioration gets irregular. In some cases, cracks transform from one 

type to another because of misidentification or deterioration. For example, Kim et al. (2010) 

reported that longitudinal cracking might change to alligator cracking between survey periods. 

However, with current data, it is not possible to quantify the amount of distress transformation. 

Step IV: Treatment Performance Evaluation  

In this study, a treatment’s service life is measured with respect to the time lapsed until 

the pavement reaches its pre-treatment condition. Also, the service life is terminated when 

another maintenance or rehabilitation treatment is applied.  

Two statistical significance tests are conducted to investigate whether the posttreatment 

condition is significantly higher than the pretreatment condition at the end of the observed 

service years. The first test is a paired t-test while the other test is a distribution free non-

parametric Wilcoxon singed rank test. Tables 3-4 and 3-5 show the test results for each treatment 

type and the average service life in terms of ride quality and rutting because of their consistent 

performance over time (see Table 3-3). It is worth mentioning that the number of records is 

different from the number of segments analyzed because rutting and ride quality are collected for 
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both the left and right wheelpaths. According to the results of significance tests, the IRI and 

rutting values after treatment application are significantly better than those values before 

treatment application. Generally, the estimated service lives for each treatment differ based on 

the performance indicator used. This means that different maintenance and rehabilitation 

strategies could be triggered based on the pavement performance. For example, it is more 

probable that agencies need to address rutting problems before ride quality issues based on the 

service lives summarized in Tables 3-4 and 3-5. By addressing specific distresses in timely 

manner, agencies would maximize their return on maintenance and rehabilitation investments. 

Accordingly, it is important to incorporate all the performance indicators in the performance 

evaluation process and integrate the results with pavement management systems. 

Table 3-4. Significance testing using IRI data 

Pavement Type Treatment Type Number 

of records 

t-test 

Test statistic 

(p-value) 

Wilcoxon 

signed rank 

test 

Test statistic 

(p-value) 

Minimum, 

average and 

maximum 

service life 

PCC 
HMA 

resurfacing 

100 (1.15×10-34) (6.2×10-18) (3, 6.6 ,9) 

Composite with 

JPCP 

HMA 

resurfacing 

49 (2.08×10-15) (1.3×10-8) (5, 7.6, 12) 

HMA 

resurfacing with 

milling 

48 (4.15×10-16) (4.72×10-9) (5, 6.6, 9) 

HMA 

resurfacing with 

CIPR 

20 (3.29×10-11) 

 

(8.86×10-5) 

 

(3, 4.8, 7) 

Composite with 

JRCP 

HMA 

resurfacing with 

milling 

24 (4.75×10-5) (0.0014) (5, 5.3, 7) 
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AC 

HMA 

resurfacing with 

CIPR 

26 (1.07×10-12) 

 

(3.78×10-6) (7, 8.9, 13) 

 

Table 3-5. Significance testing using rutting data 

Pavement Type Treatment Type Number 

of records 

t-test 

Test statistic 

(p-value) 

Wilcoxon 

signed rank 

test 

Test statistic 

(p-value) 

Minimum, 

average and 

maximum 

service life 

Composite with 

JPCP 

HMA 

resurfacing 

49 (7.66×10-10) 

 

(4.34×10-8) 

 

(3, 6.7, 12) 

Composite with 

JPCP 

Composite with 

JRCP 

HMA 

resurfacing with 

milling 

48  (3.20×10-10) 

 

(1.63×10-9) 

 

(3, 6.1, 9) 

HMA 

resurfacing with 

CIPR 

19 (1.36×10-5) (1.32×10-4) 

 

(1, 3.4, 7) 

HMA 

resurfacing with 

milling 

24 (9.36×10-9) 

 

(2.59×10-5) 

 

(5, 5.3, 7) 

AC HMA 

resurfacing with 

CIPR 

26 (9.27×10-8) (8.29×10-6) 

 

(1, 6.5, 9) 

 

Recommendations to Change 

The analysis of the historical data identified seven major barriers that seriously impede 

the immediate implementation of a data-driven treatment performance evaluation process. This 

section discusses major recommendations to SHAs in order to fully utilize the collected data and 

improve the data collection and management practices. 
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Recommendation to Change for barrier 1: First, the locations of pavement treatment 

projects need to be recorded accurately. Since many projects had inaccurate latitude and 

longitude data, it is recommended collecting multiple points with latitudes and longitudes within 

a narrow proximity of the project specified location. This will allow the agency to quickly detect 

and discard inaccurate location data. Second, a standard location identification system must be 

used throughout the different offices of the agency. A GCS based system is recommended since 

it is compatible with most geo-location based systems.  

Recommendation to Change for barrier 2: There is a need to develop stricter quality 

control measures and standards for collecting pavement condition data and recording 

maintenance and rehabilitation data. For example, some data points show unrealistic rutting or 

IRI values, which indicates an evident error in measurement. The unexpected variation in crack 

deterioration patterns indicates the possibility of crack severity misidentification, inconsistency 

in severity level identification, or human error. SHAs may change the threshold values in 

determining the different levels of distress such as low, moderate and high. In such cases, 

previous historical data should be adjusted to meet the new definitions. Also, it is recommended 

to run the time series check on the historical data at the distress level to detect any errors or 

distress misidentification. 

Recommendation to Change for barrier 3: SHAs should collect pavement condition data 

for treated pavement segments more frequently. Additionally, the agencies should establish a 

long-term plan on tracking the performance of treated segments to ensure that historical data can 

be used to establish a data-driven performance evaluation. This would drastically increase the 

number of observed segments, which may facilitate the adoption of advanced statistical and 

analytical methods. 
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Recommendation to Change for barrier 4: The inconsistent deterioration patterns of 

pavement distresses over time are often the result of primarily poor recording practices of in-

house maintenance activities. SHAs must establish a formal practice to collect location data for 

each maintenance activity. The use of GPS enabled tablet PCs is common and is a cost-effective 

means for the purpose. Since the DOT records sealed cracks as low severity cracks, it is 

recommended recording sealed cracks separately or recording the percent of sealed cracks. Also, 

it is recommended recording the purpose of patching in a separate field such as “addressing high 

severity alligator cracking” or “utility cut”. When collecting and storing data, the agencies need 

to consider the needed and possible uses of data to minimize the existing data issues and 

fragmentation. Also, the current practices of aggregating raw pavement condition data to form 

longer segments should be revised. For example, the agencies collect rutting and IRI data for left 

and right wheelpaths and then calculate the average to represent the rut depth or IRI value. 

However, there is no justification regarding the use of the average or the maximum wheelpath 

values. Agencies accumulate the pavement cracking data as long as the pavement segment shares 

the same geometric and material attributes. This could yield long segments, ten miles or more, 

which heavily misrepresents the existing condition especially if the distresses were not evenly 

distributed along the pavement segment.  

Recommendation to Change for barriers 5 and 6: The performance evaluation process 

should be done by considering the different failure perspectives. Using one collective measure 

such as the PCI to measure the pavement performance could be misleading since each individual 

distress could yield a different performance or service life. For example, a PCI may not be a 

good indicator if a pavement needs a crack sealing or microsurfacing. As such, evaluating the 

pavement performance at the distress level would be more informative and accurate. 
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Additionally, the performance evaluation process and other decision-making processes should be 

integrated. For example, agency-wide consensus among different business units on what 

performance indicators should be used and how to estimate the service life should be made to 

achieve a true and effective data-driven decision making/support system. 

Recommendation to Change for barrier 7: Maintenance and rehabilitation data should 

also include key pieces of information that are needed for pavement performance analysis. For 

instance, HMA resurfacing with CIPR should include the percentage of recycled material. Other 

overlay projects should include inputs that affect the performance of pavement such as binder 

content, binder type, and air void percentage. Moreover, basic project information such as 

overlay thickness and milling thickness should be recorded appropriately using consistent terms. 

Some different technical terms were used alternatively referring to the same process. For 

example, milling and scarification are two different terms used in the PMIS but they refer to the 

same process which is surface removal. There is a need to develop data exchange quality 

management guidelines to ensure that data can be exchanged and integrated easily between 

different business units. While terminology consistency issue is found to be a persistent problem, 

data formatting is another major issue especially when the data is shared between two or more 

business units.  For example, maintenance project numbers are in different formats in each 

database. Thus, using the project number as a common identifier is challenging and inefficient.  

Because of the identified barriers associated with the distinctive steps of the performance 

evaluation process, the utilization of the collected data has not been fully achieved. As such, the 

use of collected data for performance evaluation or budgeting requires significant manual 

interventions. This creates an urgent need to improve highway agencies’ data collection, storage, 

and management practices to achieve the highest return on their investments. 
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Summary and Conclusions 

SHAs invest a significant amount of budget annually to collect pavement condition 

assessment data digitally. The ultimate goal of this data collection effort is to better understand 

the performance of pavements under different operating conditions and assist SHAs in making 

cost-effective decision for future pavement management decisions. However, many old practices 

in SHAs pose serious threats and work as barriers to integrating data for scientifically evaluating 

the performance of pavement. This study identified technical and integration issues when an 

SHA implements a data-driven pavement performance evaluation process. A GIS-based data 

integration framework is used to spatially integrate the pavement management data and 

rehabilitation project’s data. Several barriers are identified at different stages of the performance 

evaluation process. The majority of those barriers are related to data quality, consistency and 

exchange standards. These exchange standards should facilitate data integration between 

different offices and business units. Because of these barriers, agencies are not likely to achieve 

the satisfactory return of their data collection investments.  

Moreover, the adoption of a robust data-driven pavement performance evaluation will be 

a challenging task given the existing barriers. Recommendations to the identified seven barriers. 

Utilization of collected data can be significantly improved by recording missing data such as in-

house maintenance projects. Moreover, developing stricter quality control measures and data 

exchange standards will significantly facilitate the analysis of data to support various pavement 

management decisions.  

As for future research, there is a need to improve the data utilization protocols and quality 

control standards used by highway agencies. This entails an urgent need to analyze the current 

data management and exchange practices to overcome the heterogeneity of databases. There is a 
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need to develop a new method to represent the pavement condition to overcome the limitations 

associated with other indexes such as the PCI. Finally, a critical assessment of the drawbacks of 

the current technological advancements such as image processing algorithms and imaging/sensor 

technologies used to detect cracking data should be done to overcome the current limitations.  
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CHAPTER 4: DYNAMIC MULTIDIMENSIONAL PAVEMENT DELINEATION 

APPROACH 

Abstract 

Over the past decades, highway agencies have used automated as well as semi-automated 

data collection method such as laser scanning and ultrasonic waves, resulting in the collection of 

an enormous amount of high-density pavement condition data. Most highway agencies are now 

able to quantify the level of extent and severity of different distresses even for extremely short 

length of pavement sections. A scientific and dynamic method to aggregate those small 

pavement sections into reasonable size segments plays an important role in implementing several 

pavement management tasks. For example, accurately representing the overall pavement network 

performance and making practical maintenance and rehabilitation decisions require an accurate 

presentation of pavement condition data. This paper proposes a new segmentation method for 

pavement sections that finds homogenous segments by considering multiple pavement distresses 

using the affinity propagation clustering technique. The affinity propagation clustering technique 

finds the similarity between data points in a multidimensional space. A case study was conducted 

using pavement condition data in Iowa to illustrate the capabilities and applications of the 

proposed segmentation framework. The results of the case study showed that agencies have the 

ability to evaluate the accuracy of the delineated segments by changing the delineation 

parameters including the minimum segment length. The proposed algorithm is expected to 

significantly enhance many pavement management applications such as deterioration modeling 

and maintenance programming. 
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Introduction 

State Highway Agencies (SHAs) across the United States are now able to collect a large 

amount of pavement condition information because of the advanced technological data collection 

methods. The majority of SHAs collect pavement performance data, which encompass 

measurements of the international roughness index (IRI) and rut depth using electronic sensing 

devices that utilize laser, acoustic, and infrared technologies (McGhee 2004). These agencies 

also use imaging technologies and automated image processing techniques to estimate the levels 

of severity and extent of surface distresses. For instance, the Iowa Department of Transportation 

(DOT) collects pavement distress data for every 52 feet of half of its network (5,630 miles) 

annually which results in more than half a million records of pavement condition data. Similarly, 

the Oklahoma DOT collects 800,000 pavement data records annually for approximately 8,000 

miles (Calvarese 2007) while the Texas DOT collects pavement condition data every 0.1 mile 

(Texas DOT 2013). California Department of Transportation collects ground-penetrating radar 

(GPR) data for its entire 50,000 lane-mile state highway network (Zhao et al. 2013). These 

massive condition surveying efforts by SHAs result in high-density data that accurately describes 

the pavement condition.  

This high-density raw data is used to support a variety of decision-making applications. 

However, the raw data must be processed and delineated in order to determine reasonable 

lengths of homogenous pavement segments. The delineation process of pavement sections 

should consider a variety of attributes including the existing distresses, pavement type, 

maintenance history, and traffic volume. Additionally, the delineation method should be 

adaptable to accommodate the agency’s needs. For example, agencies may need to delineate the 

pavement condition data at very short segments to find localized deteriorated sections and apply 
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appropriate pavement treatments such as patching or partial depth repairs. Thus, a dynamic 

pavement condition delineation algorithm that allows agencies to control the attributes used to 

find similar segments would be beneficial for pavement management applications and enhance 

their effectiveness. 

Furthermore, an effective pavement management system should be able to support a 

variety of decision making systems and data analytics applications including pavement 

maintenance performance evaluation, pavement deterioration model development, and 

budgeting. For instance, the performance of a maintenance or rehabilitation treatment depends on 

the pavement condition prior to treatment application. Thus, finding homogenous segments that 

share relatively uniform pavement condition will help agencies evaluate the effectiveness of 

different treatments accurately. Similarly, the process of developing pavement deterioration 

models can be significantly enhanced by tracking the pavement performance of homogenous 

sections.  

The main objective of this study is to develop a pavement condition data delineation 

methodology that can dynamically detect homogenous pavement segments and accurately 

represent pavement performance. To illustrate the utility, data was collected from the Iowa DOT 

and a case study was conducted to test the proposed methodology and possible future 

implications. 

Literature Review 

The cumulative difference approach (CDA), developed by the American Association of 

State Highway and Transportation Officials (AASHTO), is one of the earliest methods used for 

delineating pavement condition data (AASHTO 1993). The CDA finds statistically 

homogeneous segments based on the pavement condition/distress data such as deflection, skid 
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resistance, and severities of various pavement distresses, etc. Figure 4-1 shows the CDA 

approach based on an ideal assumption of a continuous and constant distress value (ri). The 

segment length is represented on the x-axis using different intervals specified at (xi). Figure 4-

1(a) illustrates the actual pavement distress value over pavement length. Figure 4-1(b) represents 

the cumulative area, which is determined by integrating each individual pavement response rate 

over the interval limits. Finally, Figure 4-1(c) shows the difference in cumulative area values 

between the actual and the average area, which represents the fundamental concept used to 

determine uniform and homogeneous segments (AASHTO 1993).  

r1

r2

r3

X = 0 x1 x x2
X3 = Lp

P
a
v

e
m

e
n

t R
e
sp

o
n

se
 

v
a
lu

e
 (r

i )

C
u

m
m

u
la

tiv
e
 a

re
a
 A

 =
 

r
i d

x  

x = 0 x1 x x2
X3 = Lp

Ax

(+)

(-)

0

Border

Border

(-)

(-)

(+)

x1

x2

 

Figure 4-1. CDA approach (AASHTO 1993) 

 

Since the pavement condition data are collected as point measurement, the numerical 

difference between pavement responses (i.e., conditions) is calculated using equation 4-1: 

 

Where ai is calculated using equation 4-2: 
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Where n is the nth pavement response measurement, ri is the pavement response value of 

the ith measurement, and Lp is the total segment length. 

 

Many studies identified the limitations of the CDA approach and developed new 

delineation algorithms to overcome the limitations. For instance, Divinsky et al. (1997), Misra 

and Das (2004), and El Gendy and Shalaby (2004) identified some limitations associated with 

the CDA method in finding homogeneous segments. First, the CDA fails to identify more than 

one homogeneous segment with different average response levels because the method only 

considers the absolute slope change in magnitudes. Second, the CDA method cannot identify the 

same homogenous segments when elevating the distress value by a fixed value. Third, the CDA 

method does not provide the decision maker with the flexibility to choose the number of 

homogenous segments. Finally, the delineated segments are significantly influenced by the 

overall average of the pavement distress values. Based on the limitations of the CDA approach, 

several studies proposed new delineation methods. Table 4-1 summarizes those methods and 

performance indicators used to identify homogeneous pavement segments. 
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Table 4-1. Methods and performance indicators used to identify homogenous pavement 

segments 

Study Methods Response variable 

Divinsky et 

al. (1997) 
CDA Roughness 

Ping et al. 

(1999) 
CDA and significance testing Rut depth 

Kenedy et al. 

(2000) 
CDA and significance testing Roughness 

Cuhadar et al. 

(2002) 
Wavelet transform Generic 

Misra and 

Das (2004) 

Classification analysis and 

regression trees (CART)  
Roughness 

El Gendy and 

Shalaby (2004) 

Statistical quality control charts-

Absolute difference approach 
Generic 

Thomas 

(2005) 
Bayesian Algorithm Roughness 

Tejeda et al. 

(2008) 
Accumulated sum (CUSUM) 

Skid 

resistance 

Yang et al. 

(2009) 
Fuzzy c-mean clustering 

Pavement 

condition rating 

D’Apuzzo 

and Nicolosi (2012) 

Cumulative sum or difference, 

Bayesian algorithm, LCPC (Labortoire 

Central des Ponts et Chasussees) 

Skid 

resistance 

Divinsky et al (1997) modified the CDA approach to delineate pavement condition data 

using the IRI as a response variable. They modified the CDA approach to include the calculation 

of the response value standard deviation to delineate pavement condition data to consider the 

scatter characteristics of the response values. Although the modified CDA approach overcame 

one of the major weaknesses of the CDA approach, it failed to account for considering the 

variability of other response values. Similarly, Ping et al. (1999) combined the CDA method 

with statistical significance testing (t-test) to identify homogenous pavement segments based on 

the rut depth using data gathered by Florida DOT. The proposed methodology uses two 

constraints to delineate rutting values. The first constraint considers achieving a minimum 

segment length for practicality reasons. The second constraint addresses joining adjacent 



www.manaraa.com

75 

 

segments by minimizing the mean rut depth. The study found out that the sum of squared error 

values increased when the minimum segment length was higher than 0.06 mile or when the rut 

depth measurements between adjacent segments were very disperse. The approach implemented 

by Ping et al. (1999) did not consider extreme values of rut depth in segmentation. Kennedy et al. 

(2000) also combined the CDA approach and paired t-test significance testing to identify 

homogenous segments using IRI as response values. 

On the other hand, some studies developed new algorithms to delineate pavement 

condition data to fully replace the use of the CDA approach. Cuhadar et al. (2002) argued that 

the CDA approach is not effective because of the “noise-like ripples” of the observed data, which 

are averaged to find homogenous segments. Thus, they developed a wavelet transform that was 

well concentrated in time and frequency to automatically delineate the pavement condition data. 

The wavelet transform approach was found to have high performance for automatic 

segmentation. The algorithm detects singularities of the smooth waveform and mark them as 

border points.  

Misra and Das (2004) developed a segmentation approach that attempted to overcome the 

limitations of the CDA using classification analysis and regression trees (CART). The first step 

of the approach was to divide the dataset into several subsets by minimizing the value of the 

mean and the mean squared error of the pavement IRI values. The algorithm keeps dividing the 

dataset to subsets until the minimum segment length is achieved. The proposed methodology 

also joined adjacent segments based on statistical similarity. El Gendy and Shalaby (2004) also 

developed a segmentation approach using the quality control charts which considered the 

variance of the pavement response instead of the average to reduce the response variability 

within the aggregated pavement sections. The control chart approach defines the upper and lower 
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limits based on a sample standard deviation. The lower and upper limits are used to determine 

homogenous segments by keeping the pavement distress value between the limits. When the 

pavement distress values are beyond the limits, the segment border resets and a new segment is 

determined. However, the lower and upper limit can change based on the initial sample selection 

and response value.  

Thomas (2005) developed an automated road segmentation model using a Bayesian 

algorithm. The algorithm uses a long series of transformed measurements and returns the series 

into partitioned homogenous segments. Box-Cox transformation was utilized to transform the 

IRI measurement before analysis to bring the returned segments to the model assumption of 

normally distributed observations. Change points in the long series of data were determined 

using the posterior mode. However, the proposed algorithm fails to practically determine 

additional segment break points after the first break point is determined. As a result, a heuristic 

part is integrated with the algorithm to place initial change points in a sequential way based on 

the road construction history. Cafiso and Di Graziano (2012) also proposed a new methodology 

that finds change-points that can be used to detect homogenous segments. These change-points 

are determined based on minimizing the sum of the squared errors with respect to the original 

pavement response data. 

Tejeda et al. (2008) developed a procedure for specifically delineating skid resistance 

data to potentially facilitate road safety management. The procedure uses the leverage method to 

find outlier skid resistance data. Then, the accumulated sum (CUSUM) method is used to 

delineate the skid resistance data. The CUSUM method is used to find a point that divides two 

segments with different means. Finally, the procedure groups adjacent segments using the 

Student’s t-test of mean equities at 95% confidence level. However, the delineation results will 
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be affected based on the choice of the CUSUM starting point along the pavement sections. An 

algorithm developed by Yang et al. (2009) spatially clusters pavement segments to determine 

pavement preservation project boundaries. The algorithm uses fuzzy c-mean clustering method 

to minimize the variation in each cluster of pavement segments. Pavement condition rating, an 

overall pavement condition measure that considers several surface distresses, is used as the 

response variable in the proposed algorithm. The algorithm also considers hard natural 

boundaries such as bridges, roadway characteristics and so forth. The study also recommended 

using the detailed segment-level distress to increase the accuracy of the segmentation process. 

Similarly, Saliminejad and Gharaibeh (2016) used a clustering algorithm to find homogenous 

pavement segments based on their deterioration pattern which is represented by an overall 

condition index. The clustering algorithm is based on using an unskewed probability distribution 

to estimate how close the data point to each other within the cluster. Zhao et al. (2013) used GPR 

data to developed a segmentation algorithm that delineated pavement sections based on surface 

type, layer thickness and base type. Zhang and Flintsch (2013) proposed an algorithm that 

segments pavement sections based on the deflection measurements for pavement maintenance 

purposes. The algorithm used wavelet transform to de-noise the deflection measurements. 

Furthermore, the algorithm utilized CART algorithm and t-test to locate peak measurements and 

test statistical significance between segments. The minimum segment length used by Zhao et al. 

(2013) was 100 meters (328 feet) while the minimum segment length used by Zhang and 

Flintsch (2013) was 150 meters (492 feet). 

Based on the analysis of the existing literature, many studies concluded that the CDA 

approach is obsolete and there is a need to replace with a method that can accommodate the high 

density pavement condition data. Additionally, all of the previous attempts to delineate pavement 
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condition data has failed to consider multiple existing pavement distresses. This study proposes 

an efficient and dynamic pavement segmentation algorithm that aggregates pavement section at 

the distress level. 

Dynamic Delineation Framework 

The proposed delineation framework, illustrated in Figure 4-2, is divided into three steps.  

The first step of the segmentation framework aims to detect hard boundaries set by different 

attributes such as pavement characteristics or traffic volume. Hard boundaries are determined by 

the pavement geometry, pavement design, or other existing structure. For example, the start and 

end points of these segments consider the existing barriers such as bridges or traffic 

intersections. These attributes are historically defined and stored in the agency’s pavement 

management information system. The output of the first step is a database that contains a list of 

pavement segments that are truncated based on the existing hard boundaries. While some 

agencies (e.g., Iowa DOT) consider the maintenance history as a hard boundary, it is not 

necessary that the construction history constraint would yield homogenous pavement segments.  

The second step aims to summarize the raw pavement condition data to form pavement 

segments that have a specified minimum segment length. Finally, the affinity propagation 

algorithm is used to find longer homogenous segments. Further details on these steps are 

discussed below. For the rest of this study, the term “section” is operationalized as the raw data 

collected by agencies (e.g., shortest unit of pavements) whereas the term “segment” refers to a 

pavement that consists of multiple pavement sections. 
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Figure 4-2. Dynamic segmentation framework 

Step 1: Setting Hard Boundaries 

Information stored in agencies’ pavement management information systems is used to 

determine the start and end mileposts of pavement segments. Highway agencies often set these 

hard boundaries by assigning a unique key identifier to pavement segments. For example, the 

Iowa DOT assigns a unique identifier called “Original Key” to pavement segments that share the 

same attributes (e.g., pavement design, maintenance history, and traffic volume).  

In this study, a special type of data structure called “Ordered Dictionary” is used to store 

the pavement condition data based on identified hard boundaries. An Ordered dictionary is 

similar to a database that is used to map attributes to keys. In this context, the key used in the 

dictionary is the original key and the attributes associated with each original key are the 

pavement condition data (see Figure 4-3). For implementation purposes, ordered dictionaries are 
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used because they keep the order of its records after data processing. This is an important feature 

for this data structure to keep the order of pavement sections after data processing to ensure the 

geometric continuity of pavement sections.  

Data Dictionary = {Original Key 1: [Attribute1,1, Attribute1,2, .,Attribute1,i], [Attribute2,1, 

Attribute2,2, .,Attribute2,i], ..[Attributen,1, Attributen,2, .,Attributen,i], 

Original Key 2: [Attribute1,1, Attribute1,2, .,Attribute1,i], [Attribute2,1, 

Attribute2,2, .,Attribute2,i], ..[Attributen,1, Attributen,2, .,Attributen,i],

 .,

Original Key N[[Attribute1,1, Attribute1,2, .,Attribute1,i], [Attribute2,1, 

Attribute2,2, .,Attribute2,i], ..[Attributen,1, Attributen,2, .,Attributen,i]}
Attributes for N 

sections

Sectionn 

attributes

Index Section1 

attributes

 

Figure 4-3. Data structure for pavement condition data 

 

Step 2: Determining Minimum Segment Length 

From the literature review, there is no consensus on a minimum segment length. In fact, 

short segments help agencies determine locally distressed sections, which will trigger local 

treatments such as patching, or partial depth repairs. On the other hand, longer segments are 

considered more practical for maintenance planning and overall condition reporting. As such, the 

proposed delineation algorithm provides the flexibility to determine the minimum segment 

length. The algorithm uses the moving window average and cumulative sum to summarize the 

pavement condition data to create longer segments that meet the minimum segment length 

requirement. The width of the moving window is set by the user/agency which provides the 

flexibility to run different types of analyses including the effect of minimum segment length on 

condition representation and maintenance programming. Figure 4-4 shows an example of the 

moving window summary concept. In this example, the width of the window is ‘n’. The 

summary of the resulted segment is calculated as shown in Figure 4-4. 
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Data Dictionary = {Original Key 1:  [RUT1,1, IRI1,2, .,Crack X1,i], 

[RUT2,1, IRI2,2, .,Crack X2,i],

[RUT3,1, IRI3,2, .,Crack X3,i],

[RUT4,1, IRI4,2, .,Crack X4,i],

[RUT5,1, IRI5,2, .,Crack X5,i],

[RUT6,1, IRI6,2, .,Crack X6,i],

[RUT7,1, IRI7,2, .,Crack X7,i],

[RUT8,1, IRI8,2, .,Crack X8,i],

[RUT9,1, IRI9,2, .,Crack X9,i],

[RUT10,1, IRI10,2, .,Crack X10,i],

.

.

.

.

[RUTn,1, IRIn,2, .,Crack Xn,i] .} 

Cracking data

[                     ,                 , .,                                ]

 

Figure 4-4. Moving window to determine the minimum segment length 

Step 3: Delineating Pavement Sections Using Affinity Propagation 

In this step, the affinity propagation algorithm is used to determine similar pavement 

segments the segments that were summarized in step 2. The affinity propagation method was 

developed by Frey and Dueck (2007). It finds representative data points “exemplars” and their 

clusters by exchanging recursive real-valued messages between data points (Frey and Dueck 

2007). The magnitude of each message indicates the resemblance of one pavement section has 

for selecting another pavement section as its exemplar. This clustering algorithm uses the 

Euclidean distance to measure the similarity between potential exemplars and data points. Unlike 

other clustering techniques that randomly choose initial subset of data points to find a good 

solution, affinity propagation considers all data points as potential exemplars (Frey and Dueck 

2007). Affinity propagation also clusters the data points in N dimensional space where N 

represents the number of attributes or features.  

The method outperforms other clustering methods in many aspects. For example, the 

number of clusters does not have to be specified before the algorithm initiation. However, the 

affinity propagation does require the user to specify a cluster generation preference (pr-value), 

which is a value that specifies how preferable each point to be an exemplar. More exemplars or 
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clusters will emerge by increasing pr-value and vice versa. The affinity propagation also 

outperforms other techniques such as the k-means clustering and the expectation minimization 

algorithm since they rely on random sampling to identify the initial clusters that may result in 

poor solutions. Additionally, the affinity propagation clustering technique has an advantage over 

the hierarchical agglomerative clustering and spectral clustering since they rely on pairwise 

grouping. Thus, all points within a cluster do not have to be similar to a single center as because 

of the method of clustering (Frey and Dueck 2007). 

Implementation 

In order to implement the proposed delineation algorithm, a script was developed using 

Python programming language. Throughout the implementation process, the script uses a variety 

of functions that help with the processing of the pavement condition data, which is stored in 

arrays and dictionaries. Thus, the script uses the “NumPy” package for scientific computing 

(Walt et al. 2011). The NumPy package provides powerful tools and functions that can process 

n-dimensional array objects. Furthermore, the script uses the “scikit-learn” package for machine 

learning applications (Pedragosa et al. 2011). The scikit-learn package contains efficient tools for 

data mining and analysis which enables the integration of the affinity propagation algorithm in 

the proposed delineation method. The script takes the input data from a geodatabase file type that 

contain the raw pavement condition data and other information such as latitude and longitude, 

original keys, pavement types and so forth. Geodatabase files store both spatial and non-spatial 

data. Figure 4-5 shows the pseudo code of the proposed algorithm. 
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Figure 4-5. Python script pseudo code 

The algorithm imports data from ArcGIS, a commercial geographic information software 

application, in a geodatabase file format. Using array-processing functions, the pavement 

condition data is organized and processed. Two functions are created including a “normalize” 

function and a “summarize” function. The normalize function calculates the z-score for each 

distress value. While the summarize function aggregates the pavement condition data for a 

specific length as specified by the user. The user is required to assign the minimum segment 

length to be used in the summarize function. Additionally, the user is required to assign the 

affinity propagation input parameters such as the clustering pr-value and minimum segment 

length. Afterward, data clustering for each original key is implemented using the affinity 

propagation algorithm. The output of the affinity propagation is a cluster label for each record, 

which is then stored in ordered dictionary and appended to the original pavement condition data. 
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Case Study 

In order to test and show the capabilities of the proposed delineation algorithm, a case 

study was conducted using the data collected by the Iowa DOT that is collected every 52 feet. 

For every section, the DOT collects the location data including geographic location, beginning 

milepost and ending milepost. Additionally, the Iowa DOT collects faulting, rut depth, IRI, 

longitudinal cracking, longitudinal cracking on wheelpath, transverse cracking  and alligator 

cracking. It is worth mentioning that the Iowa DOT collects IRI measurement and rut depth for 

both the left and right wheelpaths. 

In this case study, 237.24 miles or 24,089 pavement sections, of I-35 were selected as 

input data. A total of 108 original keys were found which means that there are 108 segments in 

the 237.24 miles that share different pavement or traffic characteristics. The minimum, average 

and maximum segment lengths were 0.5, 2.2, and 14.0 miles respectively. Four different 

pavement types including Portland cement concrete (PCC), Asphalt concrete (AC), composite on 

continuous reinforced concrete, and composite with jointed plain concrete were identified in this 

study. Figure 4-6 shows the location of the selected pavement segments for the case study 

implementation.  
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Figure 4-6. Case study location 

The proposed segmentation algorithm was applied to the data collected. Several iterations 

were conducted by changing the minimum segment length and the preference for generating high 

or low number of clusters. A total of 15 iterations were conducted including five different 

minimum segment lengths including 0.01, 0.05, 0.1, 0.15, and 0.2 miles. For each minimum 

segment length, the proposed algorithm is applied three times by changing the preference of 

generating low or high number of clusters. The pr-values were -50, -100, and -200 which 

correspond to high, moderate and low preference of cluster generation. The pr-values were 

determined based on several other iterations to examine the number of clusters generated by 

changing the preference value. It was found that reducing the preference value beyond the -200 

limit yielded only one cluster per dataset. On the other hand, increasing the preference value over 

the -50 limit would yield too many clusters which generates a numerous number of segments 
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having the specified minimum segment length. Table 4-2 shows the number of segments, 

lengths, and percentage of data reduction for each iteration. The percentage of data reduction was 

measured by dividing the number of segments emerged from running the algorithm by the total 

number of pavement sections (24,089). It is observed that the percentage of data reduction and 

the average segment length increase by increasing the minimum segment length of the 

preference or cluster generation. 

Table 4-2.  Percentage of Data Reduction 

Minimum segment 

length (mile) 

Pr-value Number 

of 

segments 

Average and 

maximum segment 

lengths 

Percentage of 

data 

reduction 

0.01 Low 2704 0.09, 2.92 88.8% 

Moderate 3689 0.06, 1.99 84.7% 

High 4252 0.06, 0.89 82.3% 

0.05 Low 337 0.7, 8.53 98.6% 

Moderate 873 0.27, 3.28 96.4% 

High 1702 0.14, 1.95 92.9% 

0.1 Low 130 1.82, 12.31 99.5% 

Moderate 306 0.78. 4.44 98.7% 

High 628 0.38, 3.28 97.4% 

0.15 Low 111 2.14, 13.90 99.5% 

Moderate 178 1.33, 8.53 99.3% 

High 351 0.68, 4.28 98.5% 

0.2 Low 109 2.18, 13.85 99.5% 

Moderate 146 1.62, 13.85 99.3% 

High 272 0.87, 5.32 98.8% 

 

For each iteration, the pavement condition index (PCI) and ride quality index (RQI) were 

calculated for each segment according to the Iowa DOT procedures (Bektas et al. 2014). The PCI 

is an indication of the overall pavement condition whereas the RQI represents the ride quality. 

First, pavement surface distresses are aggregated according to the pavement type.  

For each cracking type, three levels of severity are collected including low, moderate and 

high. The crack severities were aggregated using the coefficients of 1, 1.5, and 2 for low, 
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moderate and high severities respectively. After aggregating crack severities, a crack index (CI) 

for each crack type was calculated according to the pavement type. The value of each index is 

from 0 to 100 where 100 represents excellent condition and 0 represents poor condition. The 

Iowa DOT uses a failure threshold value for each index and then uses deduction to 

proportionally calculate the CI. For PCC pavements, the threshold values for the transverse 

cracking and longitudinal cracking indexes are 241.4 count/mile (150 count/km) and 1320 

ft/mile (250 m/km) respectively. For AC pavements, the threshold values for the transverse 

cracking, longitudinal cracking, longitudinal cracking on wheel path, and alligator cracking are 

482.8 count/mile (300 count/km), 2640 ft/mile (500 m/km), 2640 ft/mile (500m/km), and 6235.2 

ft2/mile (360 m2/km) respectively. For composite pavements, the threshold values for transverse 

cracking and longitudinal cracking indexes are 804.67 count/mile (500 count/km) and 2640 

ft/mile (500 m/km) respectively. The CIs for PCC, AC and composite pavements were calculated 

according to equations 4-1 to 4-3 respectively: 

 

 

 

Where TCI is the transverse cracking index, LCI is the longitudinal cracking index, 

LWCI is the longitudinal cracking on wheel path cracking index and ACI is the alligator 

cracking index. 

The Iowa DOT then calculates rutting, ride quality, and faulting performance indicators 

that are used to estimate the PCI according to the pavement type. The rutting index (RI) is 

derived from the rut depth, which is the depression on the wheel path in asphalt pavements. The 
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failure threshold value is 0.47 inches (12 mm) and corresponds to a RI of 0. The RQI is similarly 

derived from the IRI measurements. IRI measurements less than or equal 31.68 in/mile (0.5 

m/km) corresponds a perfect RQI of 100 while IRI measurements greater than or equal 253.44 

in/mile (4 m/km) corresponds to poor RQI of 0. Faulting index (FI) is derived based on the 

faulting values which are the vertical displacements between neighboring slabs in PCC 

pavements. A vertical displacement of 0.47 inches (12 mm) corresponds to a 0 index.  

Based on the aforementioned indexes, the PCIs were calculated according to the Iowa 

DOT practice as shown in Equations 4-4 and 4-5: 

 

 

For each iteration, pavement condition indexes were calculated for all segments. 

Additionally, the PCIs of pavement sections and delineated segments were also calculated. By 

comparing the pavement condition indexes or distresses of the delineated segments to the 

pavement sections, agencies can estimate how accurate the delineated segments represent the 

original pavement condition. 

In order to evaluate the accuracy of condition representation, the study developed two 

methods to measure the accuracy of the delineated segments when compared to the raw 

pavement condition data. The first method evaluates the pavement condition representation at the 

distress level while the second method evaluates the condition representation using the overall 

condition indicators including the PCI and RQI. Thus, the first method looks at the absolute error 

for each pavement distress according to the pavement type. The sum absolute error is calculated 

according to Equation 4-6: 



www.manaraa.com

89 

 

 

Where N is the number of sections, M is the number of distresses under consideration, 

RS is the normalized response value of a specific distress of a segment, and RD is the normalized 

response value of a specific distress of a pavement section. The normalization or standardization 

of the distress values was conducted by calculating the z-score for each distress value. This 

provides a consistent method to compare different distress values to each other since they were 

represented in different units or methods. Figure 4-7 shows an example of the absolute error, 

before normalization, of rut depth between the delineated segment and the raw pavement 

condition data. In this example, the delineated segment receives the average value of the 

pavement section’s rut depth. 
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Figure 4-7. Error estimation between delineated segments and original distress values 

The sum of the absolute error is used as an accuracy measure. The higher the absolute 

error, the higher the deviation of the summarized data or delineated segments from the raw 

pavement condition data. Figure 4-8 shows the relationship between the sum of absolute error 

and the percentage of data reduction where an exponential relationship between the percentage 
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of data reduction and the absolute error was observed. The sum absolute error increases 

drastically when the percentage of data reduction goes above 97%.  

 

Figure 4-8. Relationship between the sum of the absolute error and percentage of data 

reduction 

The second method aims at assessing the overall pavement condition representation 

accuracy by comparing the PCI and RQI distributions of pavement sections to the PCI and RQI 

distributions of the delineated segments. Figure 4-9 shows the PCI values versus the percentage 

of segments of the raw condition data and the delineated segments that emerged from each 

iteration when setting the minimum segment length to 0.1 miles. It is observed from Figure 9 that 

there are some variations in condition representation. For example, the percentage of pavement 

sections that had a PCI between 35 and 40 was approximately 6%. However, this percentage 

escalated to 16%, 10% and 8% according to the preference of generating few, moderate, and 

many clusters respectively. One important aspect of that example is that agencies need to 

accurately determine the percentage of segments with poor condition to estimate the funding 

needed for rehabilitation projects. For example, the percentage of pavement sections with PCI of 
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40 or less is 10%. When delineating pavement segments with a minimum segment length of 0.1 

miles, this percentage was from 18% to 12% according to the clustering generation preference. 

 

Figure 4-9. PCI distributions for pavement sections and delineated segments 

Similarly, Figure 10 shows the RQI distributions for pavement sections and the 

delineated segments versus the percentage of sections when the minimum length is set to 0.1 

miles. In the case shown in Figure 4-10, the proposed segmentation method resulted in 

underestimating the percentage of delineated segments with high ride quality (i.e., RQI greater 

than 85). Simultaneously, the percentage of pavement segments with RQI between 70 and 80 

were overestimated. 
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Figure 4-10. PCI distributions for pavement sections and delineated segments 

As such, it is important to measure the overall condition distribution variations between 

the pavement sections and the delineated segments. Figures 11 to 13 show the difference 

between the PCI values of the pavement sections and the delineated pavement segments for each 

clustering preference at the three minimum segment lengths. The difference between the actual 

PCI of the pavement sections and the delineated segments increased when the PCI is greater than 

40 and less than 90 points. By increasing the minimum segment length, the difference between 

the PCI distribution of the raw pavement condition data and the PCI distribution of the 

delineated segments increased.  

 

Figure 4-11. Variation in PCI distributions associated with few clustering preference 

As expected, the accuracy of the condition representation increased by increasing the 

preference to generate more clusters. This is also measured by calculating the area under the 

curves in Figures 4-11 to 4-13. For example, when setting the minimum segment length to 0.2 

miles, the area under the curves were 2.02, 1.88, and 1.79 for few, moderate and many clustering 

generation preferences respectively. This means that setting the clustering algorithm to generate 

more clusters will increase the overall accuracy of the pavement condition representation. 
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Figure 4-12. Variation in PCI distributions associated with moderate clustering preference 

 

Figure 4-13. Variation in PCI distributions associated with many clustering preference 

Similarly, the overall accuracy of representing the segments’ ride quality was assessed by 

comparing the RQI distribution of the pavement sections to the RQI distribution of the delineated 

segments. Figures 4-14 to 4-16 show the RQI differences at few, moderate and high cluster 

generation preferences. By calculating the area under the curves, it is observed that the level of 

accuracy of representing the ride quality increased by decreasing the clustering generation 

preference. However, the level of accuracy decreased by increasing the minimum segment length 

requirement. 
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Figure 4-14. Variation in RQI distributions associated with few clustering preference 

 

Figure 4-15. Variation in RQI distributions associated with moderate clustering preference 
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Figure 4-16. Variation in RQI distributions associated with many clustering preference 

Additionally, the proposed segmentation algorithm showed that it accurately represents 

the overall ride quality of the segments when the RQI was less than 65 regardless of the 

minimum segment length requirement or the number of clusters generation preference. 

Pavement Condition Data Visualization 

The delineated segments are plotted in ArcMap 10.3, GIS software application, by using 

a Python script that converts a series of points to polylines. This conversion was conducted by 

utilizing the start and end geographic coordinates for each pavement section. A unique ID was 

also assigned to each delineated segment based on the cluster label generated by the affinity 

propagation algorithm. Based on the unique IDs, the start and end geographic coordinates were 

determined for each delineated segment. Furthermore, points along the polyline were used to plot 

the geometry of the polylines. The python script uses the unique ID and geographic coordinates 

as input parameters to produce maps containing polylines that are also associated to a table of 

attributes that contains the PCI, RQI, and CI data. One important benefit of using the proposed 

algorithm is presented by creating symbolized maps of the delineated segments. The symbolized 
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maps allow agencies to capture the pavement condition at detailed level according to the 

delineation algorithm preferences. Figure 4-17 shows nine symbolized maps of the delineated 

segments when the minimum segment length was 0.2 miles for low, moderate and high 

clustering preferences. Figure 4-17 is divided into three parts; a) symbology of delineated 

segments using the PCI, b) symbology of delineated segments using the CI, and c) symbology of 

delineated segments using the RQI. Based on the maps illustrated in Figure 4-17, agencies can 

detect heavily deteriorated segments at high clustering generation preferences. Furthermore, 

agencies can detect segments with good condition that may be suitable candidate for preservation 

or minor maintenance strategies. Agencies can also detect segments that share the same design 

attributes and traffic characteristics but deteriorated at a different and unexpected rate. Figure 4-

17 shows three examples of the aforementioned applications by magnifying three different 

locations of the study area. The first example, Figure 4-17(a), shows that the proposed algorithm 

can detect overall heavily deteriorated segments by increasing the clustering generation 

preference. In the second example, Figure 4-17(b), the algorithm differentiates between segments 

with poor and good condition when using the CI to symbolize the pavement segments. Similarly, 

the algorithm is able to differentiate between segments with different ride quality conditions (See 

Figure 4-17(c)).  
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Figure 4-17. Pavement condition data visualization of delineated segments 

Summary and Conclusion 

This study presents a pavement delineation algorithm that allows agencies to control the 

minimum segment length and the preference to generate high or low number of delineated 

segments. Additionally, the algorithm presents an important advantage over the other delineation 

techniques by considering multiple distresses when finding homogenous segments. The proposed 

technique also utilizes a powerful clustering algorithm, affinity propagation, which takes less 

time to find the most representative clusters compared to other clustering algorithms. The study 

also automated the proposed algorithm by using a Python script that takes the raw pavement 

condition data collected by agencies to generate delineated segments. 

A case study using 237 miles of pavement condition data collected in Iowa was 

conducted to show the capabilities of the proposed algorithm. Several iterations were conducted 
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that considered changing the minimum segment length and preference to generate low or high 

number of clusters. The results of the case study showed that increasing the minimum segment 

length and reducing the preference to generate more clusters will generally result in high 

percentage of data reduction associated with high level of inaccuracy of condition data 

representation. It is also observed that relationship between the percentage of data reduction and 

level of accuracy of pavement condition representation follows an exponential relationship. The 

exponential relationship provides evidence that there is a break point where the benefit of 

reducing the pavement condition data is unjustifiable and may provide misleading pavement 

condition representation. The misrepresentation of the pavement condition data can also impose 

serious implications on the agency decision making processes and the agency’s ability to 

accurately predict the future condition and program maintenance and rehabilitation strategies. 

The proposed algorithm in this study offers a foundation to revise many infrastructure 

asset management application and theories. For example, modeling the deterioration of pavement 

segments can be significantly enhanced by using the proposed delineation algorithm to find 

homogeneous pavement segments. Based on the results of the case study, pavement sections that 

share the similar traffic volume and design attributes have showed different overall condition. As 

such, this study can be expanded in the future to present a significant leap in understanding and 

accurate modeling of pavement deterioration. Additionally, the proposed algorithm can benefit 

agencies by accurately determining the right maintenance and rehabilitation strategies. 
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CONSOLIDATED CONCLUSIONS 

Highway agencies have been collecting a massive amount of digital data from their daily 

business processes. However, the digital data collected is significantly underutilized in terms of 

supporting a variety of decision-making systems. This study used historical data to enhance the 

LCCA practices adopted by a wide range of agencies. Additionally, the study identified the 

barriers and challenges faced by agencies in developing a data-driven performance evaluation 

process. Finally, the study developed a dynamic pavement delineation algorithm that aims to 

aggregate the raw pavement condition data to form longer homogenous pavement segments. 

The first paper presented a cost classification framework that differentiates between 

pavement cost items and non-pavement cost items to improve the LCCA practices. The cost 

classification framework was developed based on a rigorous analysis of approximately 100 

rehabilitation projects cost data. The results of the analysis were incorporated with a stochastic 

LCCA to evaluate the effect of including non-pavement cost items on investment decisions. The 

stochastic LCCA was performed by utilizing a Monte Carlo simulation model.  The results of the 

stochastic LCCA showed that agencies may select uneconomic decisions because of the 

inclusion of non-pavement cost items in the pavement life-cycle costs. Furthermore, the study 

showed that assuming non-pavement cost items are insignificant when compared to the 

pavement cost items is invalid.  

The second paper identified seven major barriers and challenges associated with the 

utilization of historical pavement condition data to evaluate the performance of pavement 

treatments. These barriers and challenges were identified at each step of a typical data-driven 

performance evaluation process including: 
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 Use of different geographic referencing systems 

 Poor or absence of quality control measures for data collection 

 Small sample sizes due to characterization of pavement sections 

 Inconsistent long-term performance data 

 Selection of a representative performance indicator(s) 

 Selecting a methodology to estimate pavement service lives 

 Poor documentation of maintenance and performance data 

Furthermore, the study proposed a data consistency indicator that measures the 

consistency of any performance indicator over time. This indicator provides a scientific mean to 

agencies in the process of selecting an appropriate performance indicator to analyze pavement 

performance. The study also paves the way toward adopting and implementing a data-driven 

performance evaluation process by developing a set of recommendations to change the current 

practices. 

In the third paper, a dynamic pavement delineation algorithm was developed to aggregate 

the raw pavement condition data to form longer and homogenous pavement segment that can be 

used for several pavement management applications. The proposed algorithm overcomes the 

limitations of the other existing delineation methods by segmenting the pavement sections at the 

distress level. Additionally, the proposed algorithm provides agencies with the flexibility of 

choosing the minimum segment length. The algorithm also uses a powerful data clustering 

technique called the affinity propagation. A Python script was developed in order to implement 

and automate the proposed algorithm. Using the developed Python script, the algorithm was used 

to delineate approximately 237 miles of raw condition data. Additionally, the flexibility feature 

of the algorithm was used by conducting fifteen iterations. For each iteration, the minimum 
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segment length and clustering generation preference were changed to test their effects on the 

overall condition representation. Based on the analysis of the results, it was found that the 

relationship between data reduction and error in condition representation is exponential. This 

means that the error in representing the pavement condition due to the pavement delineation 

process increased drastically at higher rates of data reduction. This study provided an efficient 

and powerful tool that can be used by agencies to dynamically delineate their pavement 

condition data based on their needs. 

Overall, this study developed a variety of methodologies that aims to improve the use of 

digital data by transportation agencies. Ultimately, the results of this study will help 

transportation agencies adopt data-driven and evidence-based decision making systems. 
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